These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 2726913)

  • 1. Reconstitution of glucose transport activity in liposomes to test proposed modulators of the transporter.
    Wheeler TJ
    Prog Clin Biol Res; 1989; 292():349-58. PubMed ID: 2726913
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of three proposed inhibitors of adipocyte glucose transport on the reconstituted transporter.
    Wheeler TJ
    Biochim Biophys Acta; 1989 Mar; 979(3):331-40. PubMed ID: 2647147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insulin-induced translocation of intracellular glucose transporters in the isolated rat adipose cell.
    Cushman SW; Wardzala LJ; Simpson IA; Karnieli E; Hissin PJ; Wheeler TJ; Hinkle PC; Salans LB
    Fed Proc; 1984 May; 43(8):2251-5. PubMed ID: 6370727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cholesterol on the reconstituted D-glucose transport system of human erythrocyte membranes.
    Fröman G
    Tokai J Exp Clin Med; 1982; 7 Suppl():131-3. PubMed ID: 6892255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genistein inhibits insulin-stimulated glucose transport and decreases immunocytochemical labeling of GLUT4 carboxyl-terminus without affecting translocation of GLUT4 in isolated rat adipocytes: additional evidence of GLUT4 activation by insulin.
    Smith RM; Tiesinga JJ; Shah N; Smith JA; Jarett L
    Arch Biochem Biophys; 1993 Jan; 300(1):238-46. PubMed ID: 8424658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and properties of the glucose transporter of human erythrocytes.
    Hirano H; Kasahara M; Nagano M; Osumi M; Sase S; Takata K
    Tokai J Exp Clin Med; 1982; 7 Suppl():121-9. PubMed ID: 6892254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solubilization, reconstitution, and attempted affinity chromatography of the sugar transporter of the erythrocyte membrane.
    Weber J; Warden DA; Semenza G; Diedrich DF
    J Cell Biochem; 1985; 27(2):83-96. PubMed ID: 4039332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental changes in glucose transport of guinea pig erythrocytes.
    Kondo T; Beutler E
    J Clin Invest; 1980 Jan; 65(1):1-4. PubMed ID: 7350191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid phloretin-induced dephosphorylation of 2-deoxyglucose-6-phosphate in rat adipocytes.
    Wieringa T; van Putten JP; Krans HM
    Biochem Biophys Res Commun; 1981 Dec; 103(3):841-7. PubMed ID: 7332579
    [No Abstract]   [Full Text] [Related]  

  • 10. Glucose 6-phosphate stimulation of MgATP-dependent Ca2+ uptake by rat kidney microsomes.
    Fulceri R; Romani A; Pompella A; Benedetti A
    Biochim Biophys Acta; 1990 Feb; 1022(1):129-33. PubMed ID: 2302399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One transporter per vesicle: determination of the basis of the insulin effect on glucose transport.
    Gorga JC; Lienhard GE
    Fed Proc; 1984 May; 43(8):2237-41. PubMed ID: 6370726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of facilitative glucose transporter with glucokinase and its modulation by ADP and glucose-6-phosphate.
    Lachaal M; Jung CY
    J Cell Physiol; 1993 Aug; 156(2):326-32. PubMed ID: 8344989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of diabetes on glucose metabolism in human adipose tissue.
    Galton DJ; Wilson JP
    Horm Metab Res; 1970; 2():Suppl 2:172-4. PubMed ID: 4261954
    [No Abstract]   [Full Text] [Related]  

  • 14. Divergent mechanisms for the insulin resistant and hyperresponsive glucose transport in adipose cells from fasted and refed rats. Alterations in both glucose transporter number and intrinsic activity.
    Kahn BB; Simpson IA; Cushman SW
    J Clin Invest; 1988 Aug; 82(2):691-9. PubMed ID: 3403723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for assessing hormone effects on glucose transport in isolated fat cells.
    Carter JR; Crofford OB
    Methods Enzymol; 1975; 37():269-76. PubMed ID: 1128247
    [No Abstract]   [Full Text] [Related]  

  • 16. Asymmetric transport of D-glucose anomers across the human erythrocyte membrane.
    Miwa I; Fujii H; Okuda J
    Biochem Int; 1988 Jan; 16(1):111-7. PubMed ID: 3355568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A type IV P-type ATPase affects insulin-mediated glucose uptake in adipose tissue and skeletal muscle in mice.
    Dhar MS; Yuan JS; Elliott SB; Sommardahl C
    J Nutr Biochem; 2006 Dec; 17(12):811-20. PubMed ID: 16517145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitution of the erythrocyte anion transport system: recent progress.
    Scheuring U; Grieshaber G; Kollewe K; Kojro Z; Ruf H; Grell E; Haase W; Schubert D
    Biomed Biochim Acta; 1987; 46(2-3):S46-50. PubMed ID: 3593315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP specifically bound as a hapten to a monoclonal anti-phospholipid antibody retains phosphate donor activity.
    Wassef NM; Swartz GM; Alving BM; Alving CR
    Biochem Biophys Res Commun; 1993 Jan; 190(2):582-8. PubMed ID: 8381281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of substrate cycles in metabolic regulation.
    Newsholme EA; Arch JR; Brooks B; Surholt B
    Biochem Soc Trans; 1983 Jan; 11(1):52-6. PubMed ID: 6337886
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.