These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 27269285)

  • 21. Cortical layer 6 control of sensory responses in higher-order thalamus.
    Ansorge J; Humanes-Valera D; Pauzin FP; Schwarz MK; Krieger P
    J Physiol; 2020 Sep; 598(18):3973-4001. PubMed ID: 32602570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Motor control by sensory cortex.
    Matyas F; Sreenivasan V; Marbach F; Wacongne C; Barsy B; Mateo C; Aronoff R; Petersen CC
    Science; 2010 Nov; 330(6008):1240-3. PubMed ID: 21109671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex.
    Zhu JJ; Connors BW
    J Neurophysiol; 1999 Mar; 81(3):1171-83. PubMed ID: 10085344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stimulus Feature-Specific Control of Layer 2/3 Subthreshold Whisker Responses by Layer 4 in the Mouse Primary Somatosensory Cortex.
    Varani S; Vecchia D; Zucca S; Forli A; Fellin T
    Cereb Cortex; 2022 Mar; 32(7):1419-1436. PubMed ID: 34448808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cortical Dependence of Whisker Responses in Posterior Medial Thalamus In Vivo.
    Mease RA; Sumser A; Sakmann B; Groh A
    Cereb Cortex; 2016 Aug; 26(8):3534-43. PubMed ID: 27230219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression.
    Böhm M; Chung DY; Gómez CA; Qin T; Takizawa T; Sadeghian H; Sugimoto K; Sakadžić S; Yaseen MA; Ayata C
    J Cereb Blood Flow Metab; 2020 Apr; 40(4):808-822. PubMed ID: 31063009
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-Generated Whisker Movements Drive State-Dependent Sensory Input to Developing Barrel Cortex.
    Dooley JC; Glanz RM; Sokoloff G; Blumberg MS
    Curr Biol; 2020 Jun; 30(12):2404-2410.e4. PubMed ID: 32413304
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal refinement of sensory-evoked activity across layers in developing mouse barrel cortex.
    van der Bourg A; Yang JW; Stüttgen MC; Reyes-Puerta V; Helmchen F; Luhmann HJ
    Eur J Neurosci; 2019 Sep; 50(6):2955-2969. PubMed ID: 30941846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial integration during active tactile sensation drives orientation perception.
    Brown J; Oldenburg IA; Telian GI; Griffin S; Voges M; Jain V; Adesnik H
    Neuron; 2021 May; 109(10):1707-1720.e7. PubMed ID: 33826906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sparse, reliable, and long-term stable representation of periodic whisker deflections in the mouse barrel cortex.
    Mayrhofer JM; Haiss F; Helmchen F; Weber B
    Neuroimage; 2015 Jul; 115():52-63. PubMed ID: 25934471
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emergence of spatiotemporal invariance in large neuronal ensembles in rat barrel cortex.
    Jacobs NS; Chen-Bee CH; Frostig RD
    Front Neural Circuits; 2015; 9():34. PubMed ID: 26217194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial gradients and inhibitory summation in the rat whisker barrel system.
    Brumberg JC; Pinto DJ; Simons DJ
    J Neurophysiol; 1996 Jul; 76(1):130-40. PubMed ID: 8836214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of primary somatosensory neuron activity during active tactile exploration.
    Campagner D; Evans MH; Bale MR; Erskine A; Petersen RS
    Elife; 2016 Feb; 5():. PubMed ID: 26880559
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vibrissae-evoked behavior and conditioning before functional ontogeny of the somatosensory vibrissae cortex.
    Landers MS; Sullivan RM
    J Neurosci; 1999 Jun; 19(12):5131-7. PubMed ID: 10366646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporal Sharpening of Sensory Responses by Layer V in the Mouse Primary Somatosensory Cortex.
    Vecchia D; Beltramo R; Vallone F; Chéreau R; Forli A; Molano-Mazón M; Bawa T; Binini N; Moretti C; Holtmaat A; Panzeri S; Fellin T
    Curr Biol; 2020 May; 30(9):1589-1599.e10. PubMed ID: 32169206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Whisker-related afferents in superior colliculus.
    Castro-Alamancos MA; Favero M
    J Neurophysiol; 2016 May; 115(5):2265-79. PubMed ID: 26864754
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cerebellar Purkinje cells can differentially modulate coherence between sensory and motor cortex depending on region and behavior.
    Lindeman S; Hong S; Kros L; Mejias JF; Romano V; Oostenveld R; Negrello M; Bosman LWJ; De Zeeuw CI
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33443203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A latent pool of neurons silenced by sensory-evoked inhibition can be recruited to enhance perception.
    Gauld OM; Packer AM; Russell LE; Dalgleish HWP; Iuga M; Sacadura F; Roth A; Clark BA; Häusser M
    Neuron; 2024 Jul; 112(14):2386-2403.e6. PubMed ID: 38729150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of optogenetic inhibition of a small fraction of parvalbumin-positive interneurons on the representation of sensory stimuli in mouse barrel cortex.
    Yeganeh F; Knauer B; Guimarães Backhaus R; Yang JW; Stroh A; Luhmann HJ; Stüttgen MC
    Sci Rep; 2022 Nov; 12(1):19419. PubMed ID: 36371511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat.
    Herfst LJ; Brecht M
    J Neurophysiol; 2008 Jun; 99(6):2821-32. PubMed ID: 18353915
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.