These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 27269363)

  • 21. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.
    Stan CA; Tang SK; Bishop KJ; Whitesides GM
    J Phys Chem B; 2011 Feb; 115(5):1089-97. PubMed ID: 21174462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells.
    Kasuga J; Mizuno K; Arakawa K; Fujikawa S
    Cryobiology; 2007 Dec; 55(3):305-14. PubMed ID: 17936742
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Homogeneous ice nucleation at moderate supercooling from molecular simulation.
    Sanz E; Vega C; Espinosa JR; Caballero-Bernal R; Abascal JL; Valeriani C
    J Am Chem Soc; 2013 Oct; 135(40):15008-17. PubMed ID: 24010583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Communication: Thermodynamics of stacking disorder in ice nuclei.
    Quigley D
    J Chem Phys; 2014 Sep; 141(12):121101. PubMed ID: 25273401
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.
    Knopf DA; Lopez MD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8056-68. PubMed ID: 19727513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heterogeneous Ice Nucleation: Interplay of Surface Properties and Their Impact on Water Orientations.
    Glatz B; Sarupria S
    Langmuir; 2018 Jan; 34(3):1190-1198. PubMed ID: 29020452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct observation of ice nucleation events on individual atmospheric particles.
    Wang B; Knopf DA; China S; Arey BW; Harder TH; Gilles MK; Laskin A
    Phys Chem Chem Phys; 2016 Nov; 18(43):29721-29731. PubMed ID: 27722496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing the critical nucleus size for ice formation with graphene oxide nanosheets.
    Bai G; Gao D; Liu Z; Zhou X; Wang J
    Nature; 2019 Dec; 576(7787):437-441. PubMed ID: 31853083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature-dependent kinetic pathways of heterogeneous ice nucleation competing between classical and non-classical nucleation.
    Li C; Liu Z; Goonetilleke EC; Huang X
    Nat Commun; 2021 Aug; 12(1):4954. PubMed ID: 34400646
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters.
    Ickes L; Welti A; Hoose C; Lohmann U
    Phys Chem Chem Phys; 2015 Feb; 17(8):5514-37. PubMed ID: 25627933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ice nucleation on carbon surface supports the classical theory for heterogeneous nucleation.
    Cabriolu R; Li T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052402. PubMed ID: 26066178
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation between thermodynamic anomalies and pathways of ice nucleation in supercooled water.
    Singh RS; Bagchi B
    J Chem Phys; 2014 Apr; 140(16):164503. PubMed ID: 24784283
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of the homogeneous freezing of water.
    Murray BJ; Broadley SL; Wilson TW; Bull SJ; Wills RH; Christenson HK; Murray EJ
    Phys Chem Chem Phys; 2010 Sep; 12(35):10380-7. PubMed ID: 20577704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of ice nucleation: freezing and antifreeze strategies.
    Zhang Z; Liu XY
    Chem Soc Rev; 2018 Sep; 47(18):7116-7139. PubMed ID: 30137078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions.
    Koop T; Luo B; Tsias A; Peter T
    Nature; 2000 Aug; 406(6796):611-4. PubMed ID: 10949298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transient Phase of Ice Observed by Sum Frequency Generation at the Water/Mineral Interface During Freezing.
    Lovering KA; Bertram AK; Chou KC
    J Phys Chem Lett; 2017 Feb; 8(4):871-875. PubMed ID: 28151687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterogeneous ice nucleation in aqueous solutions: the role of water activity.
    Zobrist B; Marcolli C; Peter T; Koop T
    J Phys Chem A; 2008 May; 112(17):3965-75. PubMed ID: 18363389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A simulation study of homogeneous ice nucleation in supercooled salty water.
    Soria GD; Espinosa JR; Ramirez J; Valeriani C; Vega C; Sanz E
    J Chem Phys; 2018 Jun; 148(22):222811. PubMed ID: 29907042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensitivity of liquid clouds to homogenous freezing parameterizations.
    Herbert RJ; Murray BJ; Dobbie SJ; Koop T
    Geophys Res Lett; 2015 Mar; 42(5):1599-1605. PubMed ID: 26074652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.