These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27269583)

  • 1. Searching the literature for proteins facilitates the identification of biological processes, if advanced methods of analysis are linked: a case study on microgravity-caused changes in cells.
    Bauer J; Bussen M; Wise P; Wehland M; Schneider S; Grimm D
    Expert Rev Proteomics; 2016 Jul; 13(7):697-705. PubMed ID: 27269583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of microgravity-based proteomics research.
    Grimm D; Pietsch J; Wehland M; Richter P; Strauch SM; Lebert M; Magnusson NE; Wise P; Bauer J
    Expert Rev Proteomics; 2014 Aug; 11(4):465-76. PubMed ID: 24957700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of microgravity on osteoblast growth.
    Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V
    Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomics and genomics of microgravity.
    Nichols HL; Zhang N; Wen X
    Physiol Genomics; 2006 Aug; 26(3):163-71. PubMed ID: 16705019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots.
    Aubry-Hivet D; Nziengui H; Rapp K; Oliveira O; Paponov IA; Li Y; Hauslage J; Vagt N; Braun M; Ditengou FA; Dovzhenko A; Palme K
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():129-41. PubMed ID: 24373012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gravitational biology within the German Space Program: goals, achievements, and perspectives.
    Ruyters G; Friedrich U
    Protoplasma; 2006 Dec; 229(2-4):95-100. PubMed ID: 17180489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast genomic expression patterns in response to low-shear modeled microgravity.
    Sheehan KB; McInnerney K; Purevdorj-Gage B; Altenburg SD; Hyman LE
    BMC Genomics; 2007 Jan; 8():3. PubMed ID: 17201921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana.
    Zupanska AK; Denison FC; Ferl RJ; Paul AL
    Am J Bot; 2013 Jan; 100(1):235-48. PubMed ID: 23258370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in gene expression and signal transduction in microgravity.
    Hughes-Fulford M
    J Gravit Physiol; 2001 Jul; 8(1):P1-4. PubMed ID: 12638602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of the effects of simulated microgravity in human gastric mucosal cells.
    Lu SY; Guo S; Chai SB; Yang JQ; Yue Y; Li H; Yan HF; Zhang T; Sun PM; Sun HW; Zhou JL; Yang JW; Li ZP; Cui Y
    Life Sci Space Res (Amst); 2022 Feb; 32():26-37. PubMed ID: 35065758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation.
    Zhang C; Li L; Chen J; Wang J
    Cell Biol Int; 2015 Jun; 39(6):647-56. PubMed ID: 25712570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calbindins decreased after space flight.
    Sergeev IN; Rhoten WB; Carney MD
    Endocrine; 1996 Dec; 5(3):335-40. PubMed ID: 11539285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative proteomic analysis of human SH-SY5Y neuroblastoma cells under simulated microgravity.
    Zhang Y; Wang H; Lai C; Wang L; Deng Y
    Astrobiology; 2013 Feb; 13(2):143-50. PubMed ID: 23421552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of different techniques for in microgravity-a simple mathematic estimation of cardiopulmonary resuscitation quality for space environment.
    Braunecker S; Douglas B; Hinkelbein J
    Am J Emerg Med; 2015 Jul; 33(7):920-4. PubMed ID: 25936478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Importance of Caveolin-1 as Key-Regulator of Three-Dimensional Growth in Thyroid Cancer Cells Cultured under Real and Simulated Microgravity Conditions.
    Riwaldt S; Bauer J; Pietsch J; Braun M; Segerer J; Schwarzwälder A; Corydon TJ; Infanger M; Grimm D
    Int J Mol Sci; 2015 Nov; 16(12):28296-310. PubMed ID: 26633361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fast rotating clinostat: a history of its use in gravitational biology and a comparison of ground-based and flight experiment results.
    Cogoli M
    ASGSB Bull; 1992 Oct; 5(2):59-67. PubMed ID: 11537642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of microgravity on invasive growth in Saccharomyces cerevisiae.
    Van Mulders SE; Stassen C; Daenen L; Devreese B; Siewers V; van Eijsden RG; Nielsen J; Delvaux FR; Willaert R
    Astrobiology; 2011; 11(1):45-55. PubMed ID: 21345087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis and bioluminescent reporter gene assays to investigate effects of simulated microgravity on Caco-2 cells.
    La Barbera G; Capriotti AL; Michelini E; Piovesana S; Calabretta MM; Zenezini Chiozzi R; Roda A; Laganà A
    Proteomics; 2017 Aug; 17(15-16):. PubMed ID: 28727291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microgravity responsive synthetic genetic device in Escherichia coli.
    Mukhopadhyay S; Bagh S
    Biosens Bioelectron; 2020 Nov; 167():112462. PubMed ID: 32781386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parathyroid hormone-related protein is a gravisensor in lung and bone cell biology.
    Torday JS
    Adv Space Res; 2003; 32(8):1569-76. PubMed ID: 15000128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.