BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27269812)

  • 21. Identification of tissue-specific DNA-protein binding sites by means of two-dimensional electrophoretic mobility shift assay display.
    Chernov IP; Timchenko KA; Akopov SB; Nikolaev LG; Sverdlov ED
    Anal Biochem; 2007 May; 364(1):60-6. PubMed ID: 17359930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Cruciform DNA Mobility Shift Assay: A Tool to Study Proteins That Recognize Bent DNA.
    Stefanovsky VY; Moss T
    Methods Mol Biol; 2015; 1334():195-203. PubMed ID: 26404151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrophoretic Mobility Shift Assay of DNA and CRISPR-Cas Ribonucleoprotein Complexes.
    Künne T; Westra ER; Brouns SJ
    Methods Mol Biol; 2015; 1311():171-84. PubMed ID: 25981473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiplex enzyme assays and inhibitor screening by mass spectrometry.
    Rathore R; Pribil P; Corr JJ; Seibel WL; Evdokimov A; Greis KD
    J Biomol Screen; 2010 Sep; 15(8):1001-7. PubMed ID: 20228278
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-throughput electrophoretic mobility shift assays for quantitative analysis of molecular binding reactions.
    Pan Y; Duncombe TA; Kellenberger CA; Hammond MC; Herr AE
    Anal Chem; 2014 Oct; 86(20):10357-64. PubMed ID: 25233437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [An infrared imaging system for detecting electrophoretic mobility shift of DNA-protein complexes].
    Wang YF; Cai DH; Chen H; Mo YY; Yi N; Xing FY
    Nan Fang Yi Ke Da Xue Xue Bao; 2009 Feb; 29(2):289-91. PubMed ID: 19246302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Horizontal Agarose Gel Mobility Shift Assay for Protein-RNA Complexes.
    Ream JA; Lewis LK; Lewis KA
    Methods Mol Biol; 2019; 1855():363-370. PubMed ID: 30426432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of DNA-binding proteins using multiplexed competitor EMSA.
    Smith AJ; Humphries SE
    J Mol Biol; 2009 Jan; 385(3):714-7. PubMed ID: 19059416
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of nanomaterial bioconjugation based on electrophoretic mobility shift.
    Vaculovicova M; Adam V; Kizek R
    Electrophoresis; 2015 May; 36(9-10):1084-5. PubMed ID: 25873337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measuring Low-Picomolar Apparent Binding Affinities by Minigel Electrophoretic Mobility Shift.
    Lewis KA; Altschuler SE; Wuttke DS
    Methods Mol Biol; 2019; 1855():341-354. PubMed ID: 30426430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoaffinity electrophoretic mobility shift assay using photoreactive DNA bearing 3-trifluoromethyl-3-phenyldiazirine in its phosphate backbone.
    Sadakane Y; Hatanaka Y
    Anal Biochem; 2016 Aug; 506():1-7. PubMed ID: 27156811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extending matrix-assisted laser desorption/ionization triple quadrupole mass spectrometry enzyme screening assays to targets with small molecule substrates.
    Rathore R; Corr JJ; Lebre DT; Seibel WL; Greis KD
    Rapid Commun Mass Spectrom; 2009 Oct; 23(20):3293-300. PubMed ID: 19757451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A mobility shift detection method for DNA methylation analysis using phosphate affinity polyacrylamide gel electrophoresis.
    Kinoshita-Kikuta E; Kinoshita E; Koike T
    Anal Biochem; 2008 Jul; 378(1):102-4. PubMed ID: 18394999
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mobility shift-based electrophoresis coupled with fluorescent detection enables real-time enzyme analysis of carbohydrate sulfatase activity.
    Byrne DP; London JA; Eyers PA; Yates EA; Cartmell A
    Biochem J; 2021 Feb; 478(4):735-748. PubMed ID: 33480417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of RNA-protein interactions using a highly sensitive non-radioactive electrophoretic mobility shift assay.
    Daras G; Alatzas A; Tsitsekian D; Templalexis D; Rigas S; Hatzopoulos P
    Electrophoresis; 2019 May; 40(9):1365-1371. PubMed ID: 30698287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a direct and sensitive detection method for DNA-binding proteins based on electrophoretic mobility shift assay and iodoacetamide derivative labeling.
    Adachi Y; Chen W; Shang WH; Kamata T
    Anal Biochem; 2005 Jul; 342(2):348-51. PubMed ID: 15950914
    [No Abstract]   [Full Text] [Related]  

  • 37. In Vitro Determination of Temperature-Dependent DNA Binding of the Evening Complex Using Electrophoretic Mobility Shift Assays.
    Hutin S; Wigge PA; Zubieta C
    Methods Mol Biol; 2024; 2795():135-147. PubMed ID: 38594535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a high-throughput fluorescence polarization DNA cleavage assay for the identification of FEN1 inhibitors.
    McWhirter C; Tonge M; Plant H; Hardern I; Nissink W; Durant ST
    J Biomol Screen; 2013 Jun; 18(5):567-75. PubMed ID: 23427045
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrophoretic mobility shift assay analysis of NF-κB DNA binding.
    Ramaswami S; Hayden MS
    Methods Mol Biol; 2015; 1280():3-13. PubMed ID: 25736740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mobility-shift analysis with microfluidics chips.
    Clark J; Shevchuk T; Swiderski PM; Dabur R; Crocitto LE; Buryanov YI; Smith SS
    Biotechniques; 2003 Sep; 35(3):548-54. PubMed ID: 14513560
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.