These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27270039)

  • 21. Molecular Tension Probes for Imaging Forces at the Cell Surface.
    Liu Y; Galior K; Ma VP; Salaita K
    Acc Chem Res; 2017 Dec; 50(12):2915-2924. PubMed ID: 29160067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of nanoparticles with cells.
    Mailänder V; Landfester K
    Biomacromolecules; 2009 Sep; 10(9):2379-400. PubMed ID: 19637907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic simulation and modeling of the motion modes produced during the 3D controlled manipulation of biological micro/nanoparticles based on the AFM.
    Saraee MB; Korayem MH
    J Theor Biol; 2015 Aug; 378():65-78. PubMed ID: 25953389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling.
    Laporte SA; Scott MGH
    Methods Mol Biol; 2019; 1957():9-55. PubMed ID: 30919345
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Life on the wire: on tensegrity and force balance in cells.
    Galli C; Guizzardi S; Passeri G; Macaluso GM; Scandroglio R
    Acta Biomed; 2005 Apr; 76(1):5-12. PubMed ID: 16116819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time in vivo imaging of extracellular ATP in the brain with a hybrid-type fluorescent sensor.
    Kitajima N; Takikawa K; Sekiya H; Satoh K; Asanuma D; Sakamoto H; Takahashi S; Hanaoka K; Urano Y; Namiki S; Iino M; Hirose K
    Elife; 2020 Jul; 9():. PubMed ID: 32648544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Programmable Multivalent DNA-Origami Tension Probes for Reporting Cellular Traction Forces.
    Dutta PK; Zhang Y; Blanchard AT; Ge C; Rushdi M; Weiss K; Zhu C; Ke Y; Salaita K
    Nano Lett; 2018 Aug; 18(8):4803-4811. PubMed ID: 29911385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ras nanoclusters: Versatile lipid-based signaling platforms.
    Zhou Y; Hancock JF
    Biochim Biophys Acta; 2015 Apr; 1853(4):841-9. PubMed ID: 25234412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Far-field photostable optical nanoscopy (PHOTON) for real-time super-resolution single-molecular imaging of signaling pathways of single live cells.
    Huang T; Browning LM; Xu XH
    Nanoscale; 2012 Apr; 4(9):2797-812. PubMed ID: 22331098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-molecule protein unfolding and refolding using atomic force microscopy.
    Bornschlögl T; Rief M
    Methods Mol Biol; 2011; 783():233-50. PubMed ID: 21909892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineered Nanoparticles for Effective Redox Signaling During Angiogenic and Antiangiogenic Therapy.
    Nethi SK; Barui AK; Mukherjee S; Patra CR
    Antioxid Redox Signal; 2019 Feb; 30(5):786-809. PubMed ID: 29943661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways.
    Kim E; Kim JM; Kim L; Choi SJ; Park IS; Han JY; Chu YC; Choi ES; Na K; Hong SS
    Int J Nanomedicine; 2016; 11():4595-4607. PubMed ID: 27695320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Encapsulation of selenium in chitosan nanoparticles improves selenium availability and protects cells from selenium-induced DNA damage response.
    Zhang S; Luo Y; Zeng H; Wang Q; Tian F; Song J; Cheng WH
    J Nutr Biochem; 2011 Dec; 22(12):1137-42. PubMed ID: 21292467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanobiology of mesenchymal stem cells: Perspective into mechanical induction of MSC fate.
    Hao J; Zhang Y; Jing D; Shen Y; Tang G; Huang S; Zhao Z
    Acta Biomater; 2015 Jul; 20():1-9. PubMed ID: 25871537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Receptor lipid nanodomain partitioning and signaling.
    Lamaze C; Blouin CM
    Cell Cycle; 2017 Feb; 16(3):237-238. PubMed ID: 27736297
    [No Abstract]   [Full Text] [Related]  

  • 36. Construction of a Near-Infrared-Activatable Enzyme Platform To Remotely Trigger Intracellular Signal Transduction Using an Upconversion Nanoparticle.
    Gao HD; Thanasekaran P; Chiang CW; Hong JL; Liu YC; Chang YH; Lee HM
    ACS Nano; 2015 Jul; 9(7):7041-51. PubMed ID: 26102426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial Control of Biological Ligands on Surfaces Applied to T Cell Activation.
    Cai H; Depoil D; Muller J; Sheetz MP; Dustin ML; Wind SJ
    Methods Mol Biol; 2017; 1584():307-331. PubMed ID: 28255709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transient active force generation and stress fibre remodelling in cells under cyclic loading.
    McEvoy E; Deshpande VS; McGarry P
    Biomech Model Mechanobiol; 2019 Aug; 18(4):921-937. PubMed ID: 30783833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatiotemporal presentation of exogenous SDF-1 with PLGA nanoparticles modulates SDF-1/CXCR4 signaling axis in the rodent cortex.
    Dutta D; Hickey K; Salifu M; Fauer C; Willingham C; Stabenfeldt SE
    Biomater Sci; 2017 Jul; 5(8):1640-1651. PubMed ID: 28703822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A tiny touch: activation of cell signaling pathways with magnetic nanoparticles.
    Sniadecki NJ
    Endocrinology; 2010 Feb; 151(2):451-7. PubMed ID: 20016028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.