BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 27270047)

  • 1. Antioxidants as therapeutics in the intensive care unit: Have we ticked the redox boxes?
    Margaritelis NV
    Pharmacol Res; 2016 Sep; 111():126-132. PubMed ID: 27270047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress is increased in critically ill patients according to antioxidant vitamins intake, independent of severity: a cohort study.
    Abilés J; de la Cruz AP; Castaño J; Rodríguez-Elvira M; Aguayo E; Moreno-Torres R; Llopis J; Aranda P; Argüelles S; Ayala A; de la Quintana AM; Planells EM
    Crit Care; 2006; 10(5):R146. PubMed ID: 17040563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual Character of Reactive Oxygen, Nitrogen, and Halogen Species: Endogenous Sources, Interconversions and Neutralization.
    Moldogazieva NT; Mokhosoev IM; Mel'nikova TI; Zavadskiy SP; Kuz'menko AN; Terentiev AA
    Biochemistry (Mosc); 2020 Jan; 85(Suppl 1):S56-S78. PubMed ID: 32087054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Research progress of NADPH oxidases and their inhibitors].
    Yang XL; Chen YJ; Hu GY; Li QB
    Yao Xue Xue Bao; 2016 Apr; 51(4):499-506. PubMed ID: 29859517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From Physiological Redox Signalling to Oxidant Stress.
    Ward JPT
    Adv Exp Med Biol; 2017; 967():335-342. PubMed ID: 29047097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction-oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics.
    Yahyapour R; Motevaseli E; Rezaeyan A; Abdollahi H; Farhood B; Cheki M; Rezapoor S; Shabeeb D; Musa AE; Najafi M; Villa V
    Clin Transl Oncol; 2018 Aug; 20(8):975-988. PubMed ID: 29318449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance?
    Touyz RM
    Hypertension; 2004 Sep; 44(3):248-52. PubMed ID: 15262903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive oxygen species in redox cancer therapy.
    Tong L; Chuang CC; Wu S; Zuo L
    Cancer Lett; 2015 Oct; 367(1):18-25. PubMed ID: 26187782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The double-edged roles of ROS in cancer prevention and therapy.
    Wang Y; Qi H; Liu Y; Duan C; Liu X; Xia T; Chen D; Piao HL; Liu HX
    Theranostics; 2021; 11(10):4839-4857. PubMed ID: 33754031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH oxidase: a therapeutic target for hyperoxaluria-induced oxidative stress - an update.
    Joshi S; Khan SR
    Future Med Chem; 2019 Dec; 11(23):2975-2978. PubMed ID: 31659918
    [No Abstract]   [Full Text] [Related]  

  • 13. Hydrogen Sulfide and Cellular Redox Homeostasis.
    Xie ZZ; Liu Y; Bian JS
    Oxid Med Cell Longev; 2016; 2016():6043038. PubMed ID: 26881033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selenium in critical illness.
    Geoghegan M; McAuley D; Eaton S; Powell-Tuck J
    Curr Opin Crit Care; 2006 Apr; 12(2):136-41. PubMed ID: 16543790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology.
    Margaritelis NV; Cobley JN; Paschalis V; Veskoukis AS; Theodorou AA; Kyparos A; Nikolaidis MG
    Cell Signal; 2016 Apr; 28(4):256-71. PubMed ID: 26721187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations.
    Cobley JN; McHardy H; Morton JP; Nikolaidis MG; Close GL
    Free Radic Biol Med; 2015 Jul; 84():65-76. PubMed ID: 25841784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Baccharis trimera inhibits reactive oxygen species production through PKC and down-regulation p47
    de Araújo GR; Rabelo AC; Meira JS; Rossoni-Júnior JV; Castro-Borges W; Guerra-Sá R; Batista MA; Silveira-Lemos DD; Souza GH; Brandão GC; Chaves MM; Costa DC
    Exp Biol Med (Maywood); 2017 Feb; 242(3):333-343. PubMed ID: 28103717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New opportunities for targeting redox dysregulation in cardiovascular disease.
    Bubb KJ; Drummond GR; Figtree GA
    Cardiovasc Res; 2020 Mar; 116(3):532-544. PubMed ID: 31297507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.