These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 27270124)
1. Core-Shell Structured o-LiMnO2@Li2CO3 Nanosheet Array Cathode for High-Performance, Wide-Temperature-Tolerance Lithium-Ion Batteries. Guo J; Cai Y; Zhang S; Chen S; Zhang F ACS Appl Mater Interfaces; 2016 Jun; 8(25):16116-24. PubMed ID: 27270124 [TBL] [Abstract][Full Text] [Related]
2. Li Li C; Xiao Y; Zhang X; Cheng H; Cheng YJ; Xia Y ACS Appl Mater Interfaces; 2023 Sep; 15(38):44921-44931. PubMed ID: 37708444 [TBL] [Abstract][Full Text] [Related]
3. LiMnO Tian Y; Qiu Y; Liu Z; Wei X; Cao H Nanotechnology; 2021 Jan; 32(1):015402. PubMed ID: 33043900 [TBL] [Abstract][Full Text] [Related]
4. Progress, Challenge, and Prospect of LiMnO Ma J; Liu T; Ma J; Zhang C; Yang J Adv Sci (Weinh); 2024 Jan; 11(2):e2304938. PubMed ID: 37964412 [TBL] [Abstract][Full Text] [Related]
5. An Electrospun Core-Shell Nanofiber Web as a High-Performance Cathode for Iron Disulfide-Based Rechargeable Lithium Batteries. Haridas AK; Lim JE; Lim DH; Kim J; Cho KK; Matic A; Kim JK; Ahn JH ChemSusChem; 2018 Oct; 11(20):3625-3630. PubMed ID: 30113135 [TBL] [Abstract][Full Text] [Related]
6. Rich-Carbonyl Carbon Catalysis Facilitating the Li Wu Y; Ju J; Shen B; Wei J; Jiang H; Li C; Hu Y Small; 2024 Jun; 20(24):e2311891. PubMed ID: 38178190 [TBL] [Abstract][Full Text] [Related]
7. Thermal Synergy Effect between LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 Enhances the Safety of Blended Cathode for Lithium Ion Batteries. Wang J; Yu Y; Li B; Zhang P; Huang J; Wang F; Zhao S; Gan C; Zhao J ACS Appl Mater Interfaces; 2016 Aug; 8(31):20147-56. PubMed ID: 27448087 [TBL] [Abstract][Full Text] [Related]
8. Synthesis Method for Long Cycle Life Lithium-Ion Cathode Material: Nickel-Rich Core-Shell LiNi Li Q; Dang R; Chen M; Lee Y; Hu Z; Xiao X ACS Appl Mater Interfaces; 2018 May; 10(21):17850-17860. PubMed ID: 29733197 [TBL] [Abstract][Full Text] [Related]
9. Hierarchical surface atomic structure of a manganese-based spinel cathode for lithium-ion batteries. Lee S; Yoon G; Jeong M; Lee MJ; Kang K; Cho J Angew Chem Int Ed Engl; 2015 Jan; 54(4):1153-8. PubMed ID: 25470462 [TBL] [Abstract][Full Text] [Related]
10. Effects of a Sodium Phosphate Electrolyte Additive on Elevated Temperature Performance of Spinel Lithium Manganese Oxide Cathodes. Jo M; Park SH; Lee H Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443193 [TBL] [Abstract][Full Text] [Related]
11. A facile approach to nanoarchitectured three-dimensional graphene-based Li-Mn-O composite as high-power cathodes for Li-ion batteries. Zhang W; Zeng Y; Xu C; Xiao N; Gao Y; Li LJ; Chen X; Hng HH; Yan Q Beilstein J Nanotechnol; 2012; 3():513-23. PubMed ID: 23019546 [TBL] [Abstract][Full Text] [Related]
12. Self-Standing 3D Cathodes for All-Solid-State Thin Film Lithium Batteries with Improved Interface Kinetics. Xia Q; Sun S; Xu J; Zan F; Yue J; Zhang Q; Gu L; Xia H Small; 2018 Dec; 14(52):e1804149. PubMed ID: 30467972 [TBL] [Abstract][Full Text] [Related]
13. High-Valence Surface-Modified LMO Cathode Materials for Lithium-Ion Batteries: Diffusion Kinetics and Operando Thermal Stability Investigation. Baazizi M; Karbak M; Aqil M; Sayah S; Dahbi M; Ghamouss F ACS Appl Mater Interfaces; 2023 Aug; 15(34):40385-40396. PubMed ID: 37595952 [TBL] [Abstract][Full Text] [Related]
15. Systematic Optimization of Battery Materials: Key Parameter Optimization for the Scalable Synthesis of Uniform, High-Energy, and High Stability LiNi Ren D; Shen Y; Yang Y; Shen L; Levin BDA; Yu Y; Muller DA; Abruña HD ACS Appl Mater Interfaces; 2017 Oct; 9(41):35811-35819. PubMed ID: 28938066 [TBL] [Abstract][Full Text] [Related]
16. Nb Liu Y; Yang R; Li X; Yang W; Lin Y; Zhang G; Wang L Molecules; 2023 May; 28(9):. PubMed ID: 37175303 [TBL] [Abstract][Full Text] [Related]
17. Enhanced cycle performance of lithium-sulfur batteries using a separator modified with a PVDF-C layer. Wei H; Ma J; Li B; Zuo Y; Xia D ACS Appl Mater Interfaces; 2014 Nov; 6(22):20276-81. PubMed ID: 25275455 [TBL] [Abstract][Full Text] [Related]
18. Enhancing Surface Chemical Stability of LiMn Shu Y; Zeng J; Huang J; Hu G; Du K; Peng Z; Cao YB ChemSusChem; 2021 Dec; 14(24):5476-5487. PubMed ID: 34637603 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the high rate capability and cycling stability of LiMn₂O₄ by coating of solid-state electrolyte LiNbO₃. Zhang ZJ; Chou SL; Gu QF; Liu HK; Li HJ; Ozawa K; Wang JZ ACS Appl Mater Interfaces; 2014 Dec; 6(24):22155-65. PubMed ID: 25469550 [TBL] [Abstract][Full Text] [Related]