BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27270427)

  • 1. Tumor suppressor bromodomain-containing protein 7 cooperates with Smads to promote transforming growth factor-β responses.
    Liu T; Zhao M; Liu J; He Z; Zhang Y; You H; Huang J; Lin X; Feng XH
    Oncogene; 2017 Jan; 36(3):362-372. PubMed ID: 27270427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The transcriptional regulation role of BRD7 by binding to acetylated histone through bromodomain.
    Peng C; Zhou J; Liu HY; Zhou M; Wang LL; Zhang QH; Yang YX; Xiong W; Shen SR; Li XL; Li GY
    J Cell Biochem; 2006 Mar; 97(4):882-92. PubMed ID: 16265664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peroxisome proliferator-activated receptor-gamma abrogates Smad-dependent collagen stimulation by targeting the p300 transcriptional coactivator.
    Ghosh AK; Bhattacharyya S; Wei J; Kim S; Barak Y; Mori Y; Varga J
    FASEB J; 2009 Sep; 23(9):2968-77. PubMed ID: 19395477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BRD7 is a candidate tumour suppressor gene required for p53 function.
    Drost J; Mantovani F; Tocco F; Elkon R; Comel A; Holstege H; Kerkhoven R; Jonkers J; Voorhoeve PM; Agami R; Del Sal G
    Nat Cell Biol; 2010 Apr; 12(4):380-9. PubMed ID: 20228809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smad-dependent stimulation of type I collagen gene expression in human skin fibroblasts by TGF-beta involves functional cooperation with p300/CBP transcriptional coactivators.
    Ghosh AK; Yuan W; Mori Y; Varga J
    Oncogene; 2000 Jul; 19(31):3546-55. PubMed ID: 10918613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p300 is elevated in systemic sclerosis and its expression is positively regulated by TGF-β: epigenetic feed-forward amplification of fibrosis.
    Ghosh AK; Bhattacharyya S; Lafyatis R; Farina G; Yu J; Thimmapaya B; Wei J; Varga J
    J Invest Dermatol; 2013 May; 133(5):1302-10. PubMed ID: 23303459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ceap/BLOS2 interacts with BRD7 and selectively inhibits its transcription-suppressing effect on cellular proliferation-associated genes.
    Sun J; Nie J; Hao B; Li L; Xing G; Wang Z; Zhou Y; Sun Q; Li G; Zhang L; He F
    Cell Signal; 2008 Jun; 20(6):1151-8. PubMed ID: 18329849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cited2 modulates TGF-beta-mediated upregulation of MMP9.
    Chou YT; Wang H; Chen Y; Danielpour D; Yang YC
    Oncogene; 2006 Sep; 25(40):5547-60. PubMed ID: 16619037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HDAC-mediated control of ERK- and PI3K-dependent TGF-β-induced extracellular matrix-regulating genes.
    Barter MJ; Pybus L; Litherland GJ; Rowan AD; Clark IM; Edwards DR; Cawston TE; Young DA
    Matrix Biol; 2010 Sep; 29(7):602-12. PubMed ID: 20470885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smad3 is acetylated by p300/CBP to regulate its transactivation activity.
    Inoue Y; Itoh Y; Abe K; Okamoto T; Daitoku H; Fukamizu A; Onozaki K; Hayashi H
    Oncogene; 2007 Jan; 26(4):500-8. PubMed ID: 16862174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TGF-beta activated Smad signalling leads to a Smad3-mediated down-regulation of DSPP in an odontoblast cell line.
    He WX; Niu ZY; Zhao SL; Jin WL; Gao J; Smith AJ
    Arch Oral Biol; 2004 Nov; 49(11):911-8. PubMed ID: 15353247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histone H3 and H4.
    Sun H; Liu J; Zhang J; Shen W; Huang H; Xu C; Dai H; Wu J; Shi Y
    Biochem Biophys Res Commun; 2007 Jun; 358(2):435-41. PubMed ID: 17498659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription.
    Ross S; Cheung E; Petrakis TG; Howell M; Kraus WL; Hill CS
    EMBO J; 2006 Oct; 25(19):4490-502. PubMed ID: 16990801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting the role of TGF-beta type I receptor/ALK5 in pancreatic ductal adenocarcinoma: Smad activation is crucial for both the tumor suppressive and prometastatic function.
    Schniewind B; Groth S; Sebens Müerköster S; Sipos B; Schäfer H; Kalthoff H; Fändrich F; Ungefroren H
    Oncogene; 2007 Jul; 26(33):4850-62. PubMed ID: 17297450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells.
    Poncelet AC; de Caestecker MP; Schnaper HW
    Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of transcription by the heterogeneous nuclear ribonucleoprotein E1B-AP5 is mediated by complex formation with the novel bromodomain-containing protein BRD7.
    Kzhyshkowska J; Rusch A; Wolf H; Dobner T
    Biochem J; 2003 Apr; 371(Pt 2):385-93. PubMed ID: 12489984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The steroid receptor co-activator-1 (SRC-1) potentiates TGF-beta/Smad signaling: role of p300/CBP.
    Dennler S; Pendaries V; Tacheau C; Costas MA; Mauviel A; Verrecchia F
    Oncogene; 2005 Mar; 24(11):1936-45. PubMed ID: 15688032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic triterpenoids enhance transforming growth factor beta/Smad signaling.
    Suh N; Roberts AB; Birkey Reffey S; Miyazono K; Itoh S; ten Dijke P; Heiss EH; Place AE; Risingsong R; Williams CR; Honda T; Gribble GW; Sporn MB
    Cancer Res; 2003 Mar; 63(6):1371-6. PubMed ID: 12649201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TGF-β1-induced epithelial-mesenchymal transition and acetylation of Smad2 and Smad3 are negatively regulated by EGCG in human A549 lung cancer cells.
    Ko H; So Y; Jeon H; Jeong MH; Choi HK; Ryu SH; Lee SW; Yoon HG; Choi KC
    Cancer Lett; 2013 Jul; 335(1):205-13. PubMed ID: 23419524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TGF-β induces sustained upregulation of SNAI1 and SNAI2 through Smad and non-Smad pathways in a human corneal epithelial cell line.
    Aomatsu K; Arao T; Sugioka K; Matsumoto K; Tamura D; Kudo K; Kaneda H; Tanaka K; Fujita Y; Shimomura Y; Nishio K
    Invest Ophthalmol Vis Sci; 2011 Apr; 52(5):2437-43. PubMed ID: 21169525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.