These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27270486)

  • 1. Nitrogen Chemistry and Coke Transformation of FCC Coked Catalyst during the Regeneration Process.
    Shi J; Guan J; Guo D; Zhang J; France LJ; Wang L; Li X
    Sci Rep; 2016 Jun; 6():27309. PubMed ID: 27270486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of coke heterogeneity and the interaction between different coke species on the emission of toxic HCN and NO
    Li S; Jiang Q; Qi Y; Zhao D; Tang Y; Liu Q; Chen Z; Zhu Y; Dai B; Song H; Zhang L
    J Hazard Mater; 2022 Aug; 436():129187. PubMed ID: 35739717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on compositions of FCC flue gas and pollutant precursors from FCC catalysts.
    Luan H; Lin J; Xiu G; Ju F; Ling H
    Chemosphere; 2020 Apr; 245():125528. PubMed ID: 31864952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A DNP-supported solid-state NMR study of carbon species in fluid catalytic cracking catalysts.
    Mance D; van der Zwan J; Velthoen ME; Meirer F; Weckhuysen BM; Baldus M; Vogt ET
    Chem Commun (Camb); 2017 Apr; 53(28):3933-3936. PubMed ID: 28327736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic cracking of model compounds of bio-oil over HZSM-5 and the catalyst deactivation.
    Chen G; Zhang R; Ma W; Liu B; Li X; Yan B; Cheng Z; Wang T
    Sci Total Environ; 2018 Aug; 631-632():1611-1622. PubMed ID: 29727985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of Nitrogen and Evolution of N-Containing Species during Algae Pyrolysis.
    Chen W; Yang H; Chen Y; Xia M; Chen X; Chen H
    Environ Sci Technol; 2017 Jun; 51(11):6570-6579. PubMed ID: 28489946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Decoking" of a "coked" zeolite catalyst in a glow discharge.
    Khan MA; Al-Jalal AA; Bakhtiari IA
    Anal Bioanal Chem; 2003 Sep; 377(1):89-96. PubMed ID: 12861433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on emission factors of FCC flue gas pollutants in petroleum refineries.
    Luan H; Wu C; Xiu G; Ju F; Ling H; Pan H
    Environ Sci Pollut Res Int; 2022 May; 29(22):33400-33410. PubMed ID: 35028844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic Gasification of Petroleum Coke with Different Ratios of K
    Zhang M; Ban H; Wang Z; Xiang X; Wang X; Zhang Q
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions of nitrogen and oxygen surface groups in nanoporous carbons under inert and reducing atmospheres.
    Xiao B; Boudou JP; Thomas KM
    Langmuir; 2005 Apr; 21(8):3400-9. PubMed ID: 15807580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon consumption mechanism of activated coke in the presence of water vapor.
    Guo J; Li Y; Wang B; Zhu T
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1558-1568. PubMed ID: 31749012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ketal Sugar Conversion Into Green Hydrocarbons by Faujasite Zeolite in a Typical Catalytic Cracking Process.
    Pinto J; Pedrosa I; Linhares C; San Gil RAS; Lam YL; Pereira MM
    Front Chem; 2019; 7():720. PubMed ID: 31737600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Research on Anti-Nickel Contamination Mechanism and Performance for Boron-Modified FCC Catalyst.
    Yuan C; Zhou L; Chen Q; Su C; Li Z; Ju G
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon consumption and adsorption-regeneration of H
    Lin Y; Li Y; Xu Z; Guo J; Zhu T
    Environ Sci Pollut Res Int; 2021 Nov; 28(43):60557-60568. PubMed ID: 34156619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-free Nanoporous Carbon as a Catalyst for Electrochemical Reduction of CO2 to CO and CH4.
    Li W; Seredych M; Rodríguez-Castellón E; Bandosz TJ
    ChemSusChem; 2016 Mar; 9(6):606-16. PubMed ID: 26835880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional two-stage riser fluid catalytic cracking process.
    Zhang J; Shan H; Chen X; Li C; Yang C
    Appl Petrochem Res; 2014; 4(4):395-400. PubMed ID: 27656341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-Modified Pyrolysis Coke for in Situ Catalytic Cracking of Coal Tar.
    Lei Z; Hao S; Lei Z; Yang J
    ACS Omega; 2020 Jun; 5(25):14911-14923. PubMed ID: 32637765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Catalyst in Optimizing Fluid Catalytic Cracking Performance During Cracking of H-Oil-Derived Gas Oils.
    Stratiev D; Shishkova I; Ivanov M; Dinkov R; Georgiev B; Argirov G; Atanassova V; Vassilev P; Atanassov K; Yordanov D; Popov A; Padovani A; Hartmann U; Brandt S; Nenov S; Sotirov S; Sotirova E
    ACS Omega; 2021 Mar; 6(11):7626-7637. PubMed ID: 33778273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waste catalysts for waste polymer.
    Salmiaton A; Garforth A
    Waste Manag; 2007; 27(12):1891-6. PubMed ID: 17084608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CO2 co-gasification of lower sulphur petroleum coke and sugar cane bagasse via TG-FTIR analysis technique.
    Edreis EM; Luo G; Li A; Chao C; Hu H; Zhang S; Gui B; Xiao L; Xu K; Zhang P; Yao H
    Bioresour Technol; 2013 May; 136():595-603. PubMed ID: 23567736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.