BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27270505)

  • 1. In vitro culture of primary human myoblasts by using the dextran microcarriers Cytodex3®.
    Rozwadowska N; Malcher A; Baumann E; Kolanowski TJ; Rucinski M; Mietkiewski T; Fiedorowicz K; Kurpisz M
    Folia Histochem Cytobiol; 2016; 54(2):81-90. PubMed ID: 27270505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expansion of Human Mesenchymal Stem Cells in a Microcarrier Bioreactor.
    Tsai AC; Ma T
    Methods Mol Biol; 2016; 1502():77-86. PubMed ID: 27032950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bovine myoblast cell production in a microcarriers-based system.
    Verbruggen S; Luining D; van Essen A; Post MJ
    Cytotechnology; 2018 Apr; 70(2):503-512. PubMed ID: 28470539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method of encapsulating and cultivating adherent mammalian cells within collagen microcarriers.
    Wu TJ; Huang HH; Hsu YM; Lyu SR; Wang YJ
    Biotechnol Bioeng; 2007 Oct; 98(3):578-85. PubMed ID: 17421039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expansion of human mesenchymal stem cells on microcarriers.
    Hewitt CJ; Lee K; Nienow AW; Thomas RJ; Smith M; Thomas CR
    Biotechnol Lett; 2011 Nov; 33(11):2325-35. PubMed ID: 21769648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and differentiation of permanent and secondary mouse myogenic cell lines on microcarriers.
    Bardouille C; Lehmann J; Heimann P; Jockusch H
    Appl Microbiol Biotechnol; 2001 May; 55(5):556-62. PubMed ID: 11414320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed.
    Chen AK; Chew YK; Tan HY; Reuveny S; Weng Oh SK
    Cytotherapy; 2015 Feb; 17(2):163-73. PubMed ID: 25304664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous cultivation of human hamstring tenocytes on microcarriers in a spinner flask bioreactor system.
    Stich S; Ibold Y; Abbas A; Ullah M; Sittinger M; Ringe J; Schulze-Tanzil G; Müller C; Kohl B; John T
    Biotechnol Prog; 2014; 30(1):142-51. PubMed ID: 24124166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Obtention of rabies antigen through BHK21 cells adhered to microcarriers.
    Gallina NM; Paoli Rde L; Francisco IA; Garcia Gde C; Fuches RM
    Rev Inst Med Trop Sao Paulo; 1998; 40(5):291-4. PubMed ID: 10030073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chondrogenic differentiation of human adipose‑derived stem cells using microcarrier and bioreactor combination technique.
    Kang H; Lu S; Peng J; Yang Q; Liu S; Zhang L; Huang J; Sui X; Zhao B; Wang A; Xu W; Guo Q; Song Q
    Mol Med Rep; 2015 Feb; 11(2):1195-9. PubMed ID: 25355169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a measles vaccine production process in MRC-5 cells grown on Cytodex1 microcarriers and in a stirred bioreactor.
    Trabelsi K; Majoul S; Rourou S; Kallel H
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1031-40. PubMed ID: 21935589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microcarriers designed for cell culture and tissue engineering of bone.
    Park JH; Pérez RA; Jin GZ; Choi SJ; Kim HW; Wall IB
    Tissue Eng Part B Rev; 2013 Apr; 19(2):172-90. PubMed ID: 23126371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Culture of human mesenchymal stem cells on microcarriers in a 5 l stirred-tank bioreactor.
    Rafiq QA; Brosnan KM; Coopman K; Nienow AW; Hewitt CJ
    Biotechnol Lett; 2013 Aug; 35(8):1233-45. PubMed ID: 23609232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel animal-component-free medium for rabies virus production in Vero cells grown on Cytodex 1 microcarriers in a stirred bioreactor.
    Rourou S; van der Ark A; Majoul S; Trabelsi K; van der Velden T; Kallel H
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):53-63. PubMed ID: 19521697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limiting cell aggregation during mesenchymal stem cell expansion on microcarriers.
    Ferrari C; Balandras F; Guedon E; Olmos E; Chevalot I; Marc A
    Biotechnol Prog; 2012; 28(3):780-7. PubMed ID: 22374883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of oncolytic adenovirus and human mesenchymal stem cells in a single-use, Vertical-Wheel bioreactor system: Impact of bioreactor design on performance of microcarrier-based cell culture processes.
    Sousa MF; Silva MM; Giroux D; Hashimura Y; Wesselschmidt R; Lee B; Roldão A; Carrondo MJ; Alves PM; Serra M
    Biotechnol Prog; 2015; 31(6):1600-12. PubMed ID: 26289142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and development of a new ambr250® bioreactor vessel for improved cell and gene therapy applications.
    Rotondi M; Grace N; Betts J; Bargh N; Costariol E; Zoro B; Hewitt CJ; Nienow AW; Rafiq QA
    Biotechnol Lett; 2021 May; 43(5):1103-1116. PubMed ID: 33528693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse embryonic stem cell expansion in a microcarrier-based stirred culture system.
    Fernandes AM; Fernandes TG; Diogo MM; da Silva CL; Henrique D; Cabral JM
    J Biotechnol; 2007 Oct; 132(2):227-36. PubMed ID: 17644203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic cell culture on porous biopolymer microcarriers in a spinner flask for bone tissue engineering: a feasibility study.
    Jin GZ; Park JH; Seo SJ; Kim HW
    Biotechnol Lett; 2014 Jul; 36(7):1539-48. PubMed ID: 24652549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor.
    Sikavitsas VI; Bancroft GN; Mikos AG
    J Biomed Mater Res; 2002 Oct; 62(1):136-48. PubMed ID: 12124795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.