These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27270997)

  • 1. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery.
    Hu HW; Tang GH; Niu D
    Sci Rep; 2016 Jun; 6():27274. PubMed ID: 27270997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lattice Boltzmann Modeling of Condensation Heat Transfer on Downward-Facing Surfaces with Different Wettabilities.
    Wang X; Xu B; Chen Z; Yang Y; Cao Q
    Langmuir; 2020 Aug; 36(31):9204-9214. PubMed ID: 32660253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Study on a Ceramic Membrane Condenser with Air Medium for Water and Waste Heat Recovery from Flue Gas.
    Teng D; An L; Shen G; Zhang S; Zhang H
    Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Investigation into Flue Gas Water and Waste Heat Recovery Using a Purge Gas Ceramic Membrane Condenser.
    Teng D; Jia X; Yang W; An L; Shen G; Zhang H
    ACS Omega; 2022 Feb; 7(6):4956-4969. PubMed ID: 35187314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Study on Water Recovery from Flue Gas Using Macroporous Ceramic Membrane.
    Cheng C; Zhang H; Chen H
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32050626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers.
    Li JD
    Int J Heat Mass Transf; 2013 Feb; 57(2):708-721. PubMed ID: 24850953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance Analysis of the Technology of High-Temperature Boiler Feed Water to Recover the Waste Heat of Mid-Low-Temperature Flue Gas.
    Xu W; Jin Y; Zhu L; Li Z
    ACS Omega; 2021 Oct; 6(40):26318-26328. PubMed ID: 34660991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soot elimination and heat recovery of industrial flue gas by heterogeneous condensation.
    Ma L; Zhao Z; Tian C; Wang H; Liu Y
    Sci Rep; 2020 Feb; 10(1):2929. PubMed ID: 32076057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Membrane Distillation and Wet Scrubber for Simultaneous Recovery of Heat and Water from Flue Gas.
    Mohd Yusoff MH; Nyunt EK; Bilad MR; Arahman N; Mulyati S; Rizal S; Nordin NAH; Leam JJ; Khan AL; Jaafar J
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innovative use of membrane contactor as condenser for heat recovery in carbon capture.
    Yan S; Zhao S; Wardhaugh L; Feron PH
    Environ Sci Technol; 2015 Feb; 49(4):2532-40. PubMed ID: 25590169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of Boiler Condensate by Ultrafiltration for Reuse.
    Cano G; Moulin P
    Membranes (Basel); 2022 Dec; 12(12):. PubMed ID: 36557192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Analysis of an Absorption Heat Pump System for Waste Heat and Moisture Cascade Recovery from Flue Gas.
    Li Z; Xue S; Hu D; Teng D; Zhang S; Shen G
    ACS Omega; 2022 Jul; 7(28):24596-24605. PubMed ID: 35874247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of surface wettability on water vapor condensation in nanoscale.
    Niu D; Tang GH
    Sci Rep; 2016 Jan; 6():19192. PubMed ID: 26754316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale Fabrication of Wettability-Controllable Coatings for Optimizing Condensate Transfer Ability.
    Wang S; Zhao X; Teng Y; Chen X; Ahuja R
    Langmuir; 2021 Feb; 37(7):2476-2484. PubMed ID: 33545007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of heat transfer and wetting angle on condensable fluid flow through nanoporous anodic alumina membranes.
    Loimer T; Podgolin SK; Sodagar-Abardeh J; Petukhov DI; Eliseev AA
    Phys Chem Chem Phys; 2023 Jan; 25(4):3240-3250. PubMed ID: 36625448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Wettability-Induced Heat Transfer Enhancement for Condensation with NonCondensable Gas.
    Shen LY; Tang GH; Li Q; Shi Y
    Langmuir; 2019 Jul; 35(29):9430-9440. PubMed ID: 31282674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dropwise Condensate Comb for Enhanced Heat Transfer.
    Tang Y; Yang X; Wang L; Li Y; Zhu D
    ACS Appl Mater Interfaces; 2023 May; 15(17):21549-21561. PubMed ID: 37083343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Condensation on Liquid-Infused Nanoporous Surfaces by Vibration-Assisted Droplet Sweeping.
    Oh I; Cha H; Chen J; Chavan S; Kong H; Miljkovic N; Hu Y
    ACS Nano; 2020 Oct; 14(10):13367-13379. PubMed ID: 33064463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophilic membrane-based humidity control.
    Scovazzo P; Burgos J; Hoehn A; Todd P
    J Memb Sci; 1998 Oct; 149(1):69-81. PubMed ID: 11543067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.