BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 27271208)

  • 1. Accessible bioprinting: adaptation of a low-cost 3D-printer for precise cell placement and stem cell differentiation.
    Reid JA; Mollica PA; Johnson GD; Ogle RC; Bruno RD; Sachs PC
    Biofabrication; 2016 Jun; 8(2):025017. PubMed ID: 27271208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of Bioprinting with a Modified Desktop 3D Printer.
    Goldstein TA; Epstein CJ; Schwartz J; Krush A; Lagalante DJ; Mercadante KP; Zeltsman D; Smith LP; Grande DA
    Tissue Eng Part C Methods; 2016 Dec; 22(12):1071-1076. PubMed ID: 27819188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Review of 3D Printing Techniques and the Future in Biofabrication of Bioprinted Tissue.
    Patra S; Young V
    Cell Biochem Biophys; 2016 Jun; 74(2):93-8. PubMed ID: 27193609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs.
    Colosi C; Costantini M; Barbetta A; Dentini M
    Methods Mol Biol; 2017; 1612():369-380. PubMed ID: 28634956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D.
    Faulkner-Jones A; Fyfe C; Cornelissen DJ; Gardner J; King J; Courtney A; Shu W
    Biofabrication; 2015 Oct; 7(4):044102. PubMed ID: 26486521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities.
    Salaris F; Rosa A
    Brain Res; 2019 Nov; 1723():146393. PubMed ID: 31425681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting.
    Ma X; Qu X; Zhu W; Li YS; Yuan S; Zhang H; Liu J; Wang P; Lai CS; Zanella F; Feng GS; Sheikh F; Chien S; Chen S
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2206-11. PubMed ID: 26858399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue Engineering Applications of Three-Dimensional Bioprinting.
    Zhang X; Zhang Y
    Cell Biochem Biophys; 2015 Jul; 72(3):777-82. PubMed ID: 25663505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inner Workings: 3D printer innovations tackle complexity of metamaterials, living tissue.
    Bourzac K
    Proc Natl Acad Sci U S A; 2017 Apr; 114(16):4034-4036. PubMed ID: 28420749
    [No Abstract]   [Full Text] [Related]  

  • 10. 3D printing of functional biomaterials for tissue engineering.
    Zhu W; Ma X; Gou M; Mei D; Zhang K; Chen S
    Curr Opin Biotechnol; 2016 Aug; 40():103-112. PubMed ID: 27043763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers.
    Du M; Chen B; Meng Q; Liu S; Zheng X; Zhang C; Wang H; Li H; Wang N; Dai J
    Biofabrication; 2015 Dec; 7(4):044104. PubMed ID: 26684899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimising the biocompatibility of 3D printed photopolymer constructs in vitro and in vivo.
    Ngan CGY; O'Connell CD; Blanchard R; Boyd-Moss M; Williams RJ; Bourke J; Quigley A; McKelvie P; Kapsa RMI; Choong PFM
    Biomed Mater; 2019 Mar; 14(3):035007. PubMed ID: 30795002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation.
    Gu Q; Tomaskovic-Crook E; Wallace GG; Crook JM
    Adv Healthc Mater; 2017 Sep; 6(17):. PubMed ID: 28544655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a high-performance open-source 3D bioprinter.
    Tashman JW; Shiwarski DJ; Feinberg AW
    Sci Rep; 2022 Dec; 12(1):22652. PubMed ID: 36587043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation.
    Ouyang L; Yao R; Mao S; Chen X; Na J; Sun W
    Biofabrication; 2015 Nov; 7(4):044101. PubMed ID: 26531008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional bioprinting human cardiac tissue chips of using a painting needle method.
    Chikae S; Kubota A; Nakamura H; Oda A; Yamanaka A; Akagi T; Akashi M
    Biotechnol Bioeng; 2019 Nov; 116(11):3136-3142. PubMed ID: 31369146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing.
    Knowlton S; Yenilmez B; Tasoglu S
    Trends Biotechnol; 2016 Sep; 34(9):685-688. PubMed ID: 27424152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes.
    Xu C; Chai W; Huang Y; Markwald RR
    Biotechnol Bioeng; 2012 Dec; 109(12):3152-60. PubMed ID: 22767299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures.
    Jin Y; Compaan A; Bhattacharjee T; Huang Y
    Biofabrication; 2016 Jun; 8(2):025016. PubMed ID: 27257095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.