BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 27271208)

  • 21. Printing Technologies for Medical Applications.
    Shafiee A; Atala A
    Trends Mol Med; 2016 Mar; 22(3):254-265. PubMed ID: 26856235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Standardized 3D Bioprinting of Soft Tissue Models with Human Primary Cells.
    Rimann M; Bono E; Annaheim H; Bleisch M; Graf-Hausner U
    J Lab Autom; 2016 Aug; 21(4):496-509. PubMed ID: 25609254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances on Bone Substitutes through 3D Bioprinting.
    Genova T; Roato I; Carossa M; Motta C; Cavagnetto D; Mussano F
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32977633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix.
    Yu C; Ma X; Zhu W; Wang P; Miller KL; Stupin J; Koroleva-Maharajh A; Hairabedian A; Chen S
    Biomaterials; 2019 Feb; 194():1-13. PubMed ID: 30562651
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: A new biofabrication strategy.
    Tan YJ; Tan X; Yeong WY; Tor SB
    Sci Rep; 2016 Dec; 6():39140. PubMed ID: 27966623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.
    Ouyang L; Yao R; Zhao Y; Sun W
    Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity.
    Blaeser A; Duarte Campos DF; Puster U; Richtering W; Stevens MM; Fischer H
    Adv Healthc Mater; 2016 Feb; 5(3):326-33. PubMed ID: 26626828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A three-dimensional bioprinting system for use with a hydrogel-based biomaterial and printing parameter characterization.
    Song SJ; Choi J; Park YD; Lee JJ; Hong SY; Sun K
    Artif Organs; 2010 Nov; 34(11):1044-8. PubMed ID: 21092048
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a bioprinting approach for automated manufacturing of multi-cell type biocomposite TRACER strips using contact capillary-wicking.
    Li NT; Rodenhizer D; Mou J; Shahaj A; Samardzic K; McGuigan AP
    Biofabrication; 2019 Oct; 12(1):015001. PubMed ID: 31553953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioprinting of 3D hydrogels.
    Stanton MM; Samitier J; Sánchez S
    Lab Chip; 2015 Aug; 15(15):3111-5. PubMed ID: 26066320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D bioprinting of liver spheroids derived from human induced pluripotent stem cells sustain liver function and viability in vitro.
    Goulart E; de Caires-Junior LC; Telles-Silva KA; Araujo BHS; Rocco SA; Sforca M; de Sousa IL; Kobayashi GS; Musso CM; Assoni AF; Oliveira D; Caldini E; Raia S; Lelkes PI; Zatz M
    Biofabrication; 2019 Nov; 12(1):015010. PubMed ID: 31577996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Printing of Patterned, Engineered E. coli Biofilms with a Low-Cost 3D Printer.
    Schmieden DT; Basalo Vázquez SJ; Sangüesa H; van der Does M; Idema T; Meyer AS
    ACS Synth Biol; 2018 May; 7(5):1328-1337. PubMed ID: 29690761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.
    Zhao Y; Li Y; Mao S; Sun W; Yao R
    Biofabrication; 2015 Nov; 7(4):045002. PubMed ID: 26523399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle.
    Attalla R; Puersten E; Jain N; Selvaganapathy PR
    Biofabrication; 2018 Dec; 11(1):015012. PubMed ID: 30537688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New strategy for enhancing in situ cell viability of cell-printing process via piezoelectric transducer-assisted three-dimensional printing.
    Koo Y; Kim G
    Biofabrication; 2016 May; 8(2):025010. PubMed ID: 27203798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomaterial-Free Three-Dimensional Bioprinting of Cardiac Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes.
    Ong CS; Fukunishi T; Zhang H; Huang CY; Nashed A; Blazeski A; DiSilvestre D; Vricella L; Conte J; Tung L; Tomaselli GF; Hibino N
    Sci Rep; 2017 Jul; 7(1):4566. PubMed ID: 28676704
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.
    Choi YJ; Kim TG; Jeong J; Yi HG; Park JW; Hwang W; Cho DW
    Adv Healthc Mater; 2016 Oct; 5(20):2636-2645. PubMed ID: 27529631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.