BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 27271208)

  • 61. A simple and efficient feeder-free culture system to up-scale iPSCs on polymeric material surface for use in 3D bioprinting.
    Wong CW; Chen YT; Chien CL; Yu TY; Rwei SP; Hsu SH
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():69-79. PubMed ID: 29025676
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Progress in application of 3D bioprinting in cartilage regeneration and reconstruction for tissue engineering].
    Liao J; Wang S; Chen J; Xie H; Zhou J
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 42(2):221-225. PubMed ID: 28255127
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering.
    Izadifar Z; Chang T; Kulyk W; Chen X; Eames BF
    Tissue Eng Part C Methods; 2016 Mar; 22(3):173-88. PubMed ID: 26592915
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Novel 3D Bioprinter Using Direct-Volumetric Drop-On-Demand Technology for Fabricating Micro-Tissues and Drug-Delivery.
    Grottkau BE; Hui Z; Pang Y
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32423161
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In situ three-dimensional printing for reparative and regenerative therapy.
    Ashammakhi N; Ahadian S; Pountos I; Hu SK; Tellisi N; Bandaru P; Ostrovidov S; Dokmeci MR; Khademhosseini A
    Biomed Microdevices; 2019 Apr; 21(2):42. PubMed ID: 30955134
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Bioprinting 3D human cardiac tissue chips using the pin type printer 'microscopic painting device' and analysis for cardiotoxicity.
    Chikae S; Kubota A; Nakamura H; Oda A; Yamanaka A; Akagi T; Akashi M
    Biomed Mater; 2021 Feb; 16(2):025017. PubMed ID: 33445157
    [TBL] [Abstract][Full Text] [Related]  

  • 67. 3D-Printed Collagen Scaffolds Promote Maintenance of Cryopreserved Patients-Derived Melanoma Explants.
    Jeong YM; Bang C; Park M; Shin S; Yun S; Kim CM; Jeong G; Chung YJ; Yun WS; Lee JH; Jin S
    Cells; 2021 Mar; 10(3):. PubMed ID: 33800001
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A Versatile Open-Source Printhead for Low-Cost 3D Microextrusion-Based Bioprinting.
    Sanz-Garcia A; Sodupe-Ortega E; Pernía-Espinoza A; Shimizu T; Escobedo-Lucea C
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33066265
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Computer-Aided Design and Manufacturing (CAD/CAM) for Bioprinting.
    Fay CD
    Methods Mol Biol; 2020; 2140():27-41. PubMed ID: 32207104
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An open source extrusion bioprinter based on the E3D motion system and tool changer to enable FRESH and multimaterial bioprinting.
    Engberg A; Stelzl C; Eriksson O; O'Callaghan P; Kreuger J
    Sci Rep; 2021 Nov; 11(1):21547. PubMed ID: 34732783
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform.
    Reid JA; Mollica PA; Bruno RD; Sachs PC
    Breast Cancer Res; 2018 Oct; 20(1):122. PubMed ID: 30305139
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Evaluation of the Usability of a Low-Cost 3D Printer in a Tissue Engineering Approach for External Ear Reconstruction.
    Kuhlmann C; Blum JC; Schenck TL; Giunta RE; Wiggenhauser PS
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769096
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Principles of Spheroid Preparation for Creation of 3D Cardiac Tissue Using Biomaterial-Free Bioprinting.
    Ong CS; Pitaktong I; Hibino N
    Methods Mol Biol; 2020; 2140():183-197. PubMed ID: 32207113
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Optimization of 3D bioprinting of periodontal ligament cells.
    Thattaruparambil Raveendran N; Vaquette C; Meinert C; Samuel Ipe D; Ivanovski S
    Dent Mater; 2019 Dec; 35(12):1683-1694. PubMed ID: 31601443
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Laser bioprinting of human induced pluripotent stem cells-the effect of printing and biomaterials on cell survival, pluripotency, and differentiation.
    Koch L; Deiwick A; Franke A; Schwanke K; Haverich A; Zweigerdt R; Chichkov B
    Biofabrication; 2018 Apr; 10(3):035005. PubMed ID: 29578448
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Three dimensional bioprinting technology of human dental pulp cells mixtures].
    Xue SH; Lv PJ; Wang Y; Zhao Y; Zhang T
    Beijing Da Xue Xue Bao Yi Xue Ban; 2013 Feb; 45(1):105-8. PubMed ID: 23411530
    [TBL] [Abstract][Full Text] [Related]  

  • 77. 3D bioprinting and its in vivo applications.
    Hong N; Yang GH; Lee J; Kim G
    J Biomed Mater Res B Appl Biomater; 2018 Jan; 106(1):444-459. PubMed ID: 28106947
    [TBL] [Abstract][Full Text] [Related]  

  • 78. 3D bioprinting using stem cells.
    Ong CS; Yesantharao P; Huang CY; Mattson G; Boktor J; Fukunishi T; Zhang H; Hibino N
    Pediatr Res; 2018 Jan; 83(1-2):223-231. PubMed ID: 28985202
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Freeform inkjet printing of cellular structures with bifurcations.
    Christensen K; Xu C; Chai W; Zhang Z; Fu J; Huang Y
    Biotechnol Bioeng; 2015 May; 112(5):1047-55. PubMed ID: 25421556
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ultra-Low-Cost 3D Bioprinting: Modification and Application of an Off-the-Shelf Desktop 3D-Printer for Biofabrication.
    Kahl M; Gertig M; Hoyer P; Friedrich O; Gilbert DF
    Front Bioeng Biotechnol; 2019; 7():184. PubMed ID: 31417899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.