These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 27271313)

  • 1. Imaging fluorescence correlation spectroscopy studies of dye diffusion in self-assembled organic nanotubes.
    Xu H; Nagasaka S; Kameta N; Masuda M; Ito T; Higgins DA
    Phys Chem Chem Phys; 2016 Jun; 18(25):16766-74. PubMed ID: 27271313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion Behavior of Differently Charged Molecules in Self-Assembled Organic Nanotubes Studied Using Imaging Fluorescence Correlation Spectroscopy.
    Ghimire G; Espinoza R; Xu H; Nagasaka S; Kameta N; Masuda M; Higgins DA; Ito T
    Langmuir; 2019 Jun; 35(24):7783-7790. PubMed ID: 31125237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic imaging studies of nanoscale polarity and mass transport phenomena in self-assembled organic nanotubes.
    Xu H; Nagasaka S; Kameta N; Masuda M; Ito T; Higgins DA
    Phys Chem Chem Phys; 2017 Aug; 19(30):20040-20048. PubMed ID: 28722740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influences of Hydrogen Bonding-Based Stabilization of Bolaamphiphile Layers on Molecular Diffusion within Organic Nanotubes Having Inner Carboxyl Groups.
    Ghimire G; Moore MM; Leuschen R; Nagasaka S; Kameta N; Masuda M; Higgins DA; Ito T
    Langmuir; 2020 Jun; 36(22):6145-6153. PubMed ID: 32396729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring doxorubicin localization in eluting TiO2 nanotube arrays through fluorescence correlation spectroscopy analysis.
    De Santo I; Sanguigno L; Causa F; Monetta T; Netti PA
    Analyst; 2012 Nov; 137(21):5076-81. PubMed ID: 22986806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence Correlation Spectroscopy Studies of Dye Diffusion on Fresh and Aged Polyethylene Terephthalate.
    Rashidi H; Shafiee O; Higgins DA
    Anal Chem; 2023 Aug; 95(32):11849-11853. PubMed ID: 37531092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dye diffusion at surfaces: charge matters.
    Daniels CR; Reznik C; Landes CF
    Langmuir; 2010 Apr; 26(7):4807-12. PubMed ID: 20163084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of ionic surfactants with cornea-mimicking anionic liposomes.
    Gupta C; Daechsel AK; Chauhan A
    Langmuir; 2011 Sep; 27(17):10840-6. PubMed ID: 21786813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes.
    Majumder M; Chopra N; Hinds BJ
    J Am Chem Soc; 2005 Jun; 127(25):9062-70. PubMed ID: 15969584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Template-directed synthesis of silica nanotubes for explosive detection.
    Yildirim A; Acar H; Erkal TS; Bayindir M; Guler MO
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):4159-64. PubMed ID: 21942571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein interactions with layers of TiO
    Kulkarni M; Mazare A; Park J; Gongadze E; Killian MS; Kralj S; von der Mark K; Iglič A; Schmuki P
    Acta Biomater; 2016 Nov; 45():357-366. PubMed ID: 27581395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of confinement on proteins concentrated in lithocholic acid based organic nanotubes.
    Lu Q; Kim Y; Bassim N; Collins GE
    J Colloid Interface Sci; 2015 Sep; 454():97-104. PubMed ID: 26004574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective transport of single protein molecules inside gold nanotubes.
    Ma C; Han R; Qi S; Yeung ES
    J Chromatogr A; 2012 May; 1238():11-4. PubMed ID: 22484122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable biomolecule release from self-assembled organic nanotubes with asymmetric surfaces: pH and temperature dependence.
    Kameta N; Minamikawa H; Masuda M; Mizuno G; Shimizu T
    Soft Matter; 2008 Jul; 4(8):1681-1687. PubMed ID: 32907162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does growth hormone releasing hexapeptide self-assemble in nanotubes?
    Santana H; Avila CL; Cabrera I; Páez R; Falcón V; Pessoa A; Ventosa N; Veciana J; Itri R; Barbosa LR
    Soft Matter; 2014 Dec; 10(46):9260-9. PubMed ID: 25325399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled synthesis of double- and multiwall silver nanotubes with template organogel from a bolaamphiphile.
    Gao P; Zhan C; Liu M
    Langmuir; 2006 Jan; 22(2):775-9. PubMed ID: 16401130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterostructured magnetic nanotubes.
    Lee D; Cohen RE; Rubner MF
    Langmuir; 2007 Jan; 23(1):123-9. PubMed ID: 17190494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.