These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27271574)

  • 1. Improved PCR Amplification of Broad Spectrum GC DNA Templates.
    Guido N; Starostina E; Leake D; Saaem I
    PLoS One; 2016; 11(6):e0156478. PubMed ID: 27271574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcycling-PCR for multiplex long-distance amplification of regions with high and low GC content: application to the inversion hotspot in the factor VIII gene.
    Liu Q; Sommer SS
    Biotechniques; 1998 Dec; 25(6):1022-8. PubMed ID: 9863056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PCR procedures to amplify GC-rich DNA sequences of Mycobacterium bovis.
    Assal N; Lin M
    J Microbiol Methods; 2021 Feb; 181():106121. PubMed ID: 33316290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymerase Chain Reaction (PCR) Amplification of GC-Rich Templates.
    Green MR; Sambrook J
    Cold Spring Harb Protoc; 2019 Feb; 2019(2):. PubMed ID: 30710022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of PCR amplification of moderate GC-containing and highly GC-rich DNA sequences.
    Strien J; Sanft J; Mall G
    Mol Biotechnol; 2013 Jul; 54(3):1048-54. PubMed ID: 23568183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates.
    Farell EM; Alexandre G
    BMC Res Notes; 2012 May; 5():257. PubMed ID: 22624992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fundamental study of the PCR amplification of GC-rich DNA templates.
    Mamedov TG; Pienaar E; Whitney SE; TerMaat JR; Carvill G; Goliath R; Subramanian A; Viljoen HJ
    Comput Biol Chem; 2008 Dec; 32(6):452-7. PubMed ID: 18760969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Successful amplification of extremely GC-rich promoter regions using a novel 'slowdown PCR' technique.
    Bachmann HS; Siffert W; Frey UH
    Pharmacogenetics; 2003 Dec; 13(12):759-66. PubMed ID: 14646694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PCR-amplification of GC-rich regions: 'slowdown PCR'.
    Frey UH; Bachmann HS; Peters J; Siffert W
    Nat Protoc; 2008; 3(8):1312-7. PubMed ID: 18714299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymerase chain reaction optimization for amplification of Guanine-Cytosine rich templates using buccal cell DNA.
    Bhagya CH; Wijesundera Sulochana WS; Hemamali NP
    Indian J Hum Genet; 2013 Jan; 19(1):78-83. PubMed ID: 23901197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 7-Deaza-2'-deoxyguanosine allows PCR and sequencing reactions from CpG islands.
    Jung A; Ruckert S; Frank P; Brabletz T; Kirchner T
    Mol Pathol; 2002 Feb; 55(1):55-7. PubMed ID: 11836448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple heat pulses during PCR extension enabling amplification of GC-rich sequences and reducing amplification bias.
    Orpana AK; Ho TH; Stenman J
    Anal Chem; 2012 Feb; 84(4):2081-7. PubMed ID: 22220596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of 7-deaza dGTP during the amplification step in the polymerase chain reaction procedure improves subsequent DNA sequencing.
    Fernandez-Rachubinski F; Eng B; Murray WW; Blajchman MA; Rachubinski RA
    DNA Seq; 1990; 1(2):137-40. PubMed ID: 2134184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Betaine, dimethyl sulfoxide, and 7-deaza-dGTP, a powerful mixture for amplification of GC-rich DNA sequences.
    Musso M; Bocciardi R; Parodi S; Ravazzolo R; Ceccherini I
    J Mol Diagn; 2006 Nov; 8(5):544-50. PubMed ID: 17065422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of PCR conditions for amplification of GC-Rich EGFR promoter sequence.
    Obradovic J; Jurisic V; Tosic N; Mrdjanovic J; Perin B; Pavlovic S; Djordjevic N
    J Clin Lab Anal; 2013 Nov; 27(6):487-93. PubMed ID: 24218132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PCR amplification of highly GC-rich DNA template after denaturation by NaOH.
    Agarwal RK; Perl A
    Nucleic Acids Res; 1993 Nov; 21(22):5283-4. PubMed ID: 8255790
    [No Abstract]   [Full Text] [Related]  

  • 17. Improved PCR method for amplification of GC-rich DNA sequences.
    Hubé F; Reverdiau P; Iochmann S; Gruel Y
    Mol Biotechnol; 2005 Sep; 31(1):81-4. PubMed ID: 16118416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparisons of PCR-based genome amplification systems using CpG island microarrays.
    Pike BL; Groshen S; Hsu YH; Shai RM; Wang X; Holtan N; Futscher BW; Hacia JG
    Hum Mutat; 2006 Jun; 27(6):589-96. PubMed ID: 16652338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing alternative base substitutions at primer CpG sites to optimise unbiased PCR amplification of methylated sequences.
    Candiloro ILM; Mikeska T; Dobrovic A
    Clin Epigenetics; 2017; 9():31. PubMed ID: 28392841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GC-rich template amplification by inverse PCR. DNA polymerase and solvent effects.
    Moreau A; Duez C; Dusart J
    Methods Mol Biol; 1997; 67():47-53. PubMed ID: 9031129
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.