These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27271799)

  • 21. The central complex and the genetic dissection of locomotor behaviour.
    Strauss R
    Curr Opin Neurobiol; 2002 Dec; 12(6):633-8. PubMed ID: 12490252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Locomotor behavior across an environmental transition in the ropefish, Erpetoichthys calabaricus.
    Pace CM; Gibb AC
    J Exp Biol; 2011 Feb; 214(Pt 4):530-7. PubMed ID: 21270300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visuo-locomotor coordination for direction changes in a manual wheelchair as compared to biped locomotion in healthy subjects.
    Charette C; Routhier F; McFadyen BJ
    Neurosci Lett; 2015 Feb; 588():83-7. PubMed ID: 25562632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of anuran locomotion: ethological and neurophysiological considerations.
    Stehouwer DJ
    J Neurobiol; 1992 Dec; 23(10):1467-85. PubMed ID: 1487745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuronal control of locomotor handedness in Drosophila.
    Buchanan SM; Kain JS; de Bivort BL
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6700-5. PubMed ID: 25953337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks.
    Courtine G; Pozzo T
    Exp Brain Res; 2004 Sep; 158(1):86-99. PubMed ID: 15164151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Behavioral idiosyncrasy reveals genetic control of phenotypic variability.
    Ayroles JF; Buchanan SM; O'Leary C; Skutt-Kakaria K; Grenier JK; Clark AG; Hartl DL; de Bivort BL
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6706-11. PubMed ID: 25953335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. mu-Opioid receptor knockout mice display reduced cocaine conditioned place preference but enhanced sensitization of cocaine-induced locomotion.
    Hall FS; Goeb M; Li XF; Sora I; Uhl GR
    Brain Res Mol Brain Res; 2004 Feb; 121(1-2):123-30. PubMed ID: 14969743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Social defeat stress-induced behavioral responses are mediated by the endogenous kappa opioid system.
    McLaughlin JP; Li S; Valdez J; Chavkin TA; Chavkin C
    Neuropsychopharmacology; 2006 Jun; 31(6):1241-8. PubMed ID: 16123746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinematic responses to changes in walking orientation and gravitational load in Drosophila melanogaster.
    Mendes CS; Rajendren SV; Bartos I; Márka S; Mann RS
    PLoS One; 2014; 9(10):e109204. PubMed ID: 25350743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term imaging of circadian locomotor rhythms of a freely crawling C. elegans population.
    Winbush A; Gruner M; Hennig GW; van der Linden AM
    J Neurosci Methods; 2015 Jul; 249():66-74. PubMed ID: 25911068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutations affecting the cAMP transduction pathway disrupt the centrophobism behavior.
    Lebreton S; Martin JR
    J Neurogenet; 2009; 23(1-2):225-34. PubMed ID: 19306211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of extracellular dopamine in the initiation and long-term expression of behavioral sensitization to cocaine.
    Heidbreder CA; Thompson AC; Shippenberg TS
    J Pharmacol Exp Ther; 1996 Aug; 278(2):490-502. PubMed ID: 8768696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A group of segmental premotor interneurons regulates the speed of axial locomotion in Drosophila larvae.
    Kohsaka H; Takasu E; Morimoto T; Nose A
    Curr Biol; 2014 Nov; 24(22):2632-42. PubMed ID: 25438948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation of D2 autoreceptors alters cocaine-induced locomotion and slows down local field oscillations in the rat ventral tegmental area.
    Koulchitsky S; Delairesse C; Beeken T; Monteforte A; Dethier J; Quertemont E; Findeisen R; Bullinger E; Seutin V
    Neuropharmacology; 2016 Sep; 108():120-7. PubMed ID: 27130904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activating properties of cocaine and cocaethylene in a behavioral preparation of Drosophila melanogaster.
    Torres G; Horowitz JM
    Synapse; 1998 Jun; 29(2):148-61. PubMed ID: 9593105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exposure to chronic stress increases the locomotor response to cocaine and the basal levels of corticosterone in adolescent rats.
    Lepsch LB; Gonzalo LA; Magro FJ; Delucia R; Scavone C; Planeta CS
    Addict Biol; 2005 Sep; 10(3):251-6. PubMed ID: 16109586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic and neural bases for species-specific behavior in Drosophila species.
    Yamamoto D; Ishikawa Y
    J Neurogenet; 2013 Sep; 27(3):130-42. PubMed ID: 23806054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silencing synaptic communication between random interneurons during Drosophila larval locomotion.
    Iyengar BG; Chou CJ; Vandamme KM; Klose MK; Zhao X; Akhtar-Danesh N; Campos AR; Atwood HL
    Genes Brain Behav; 2011 Nov; 10(8):883-900. PubMed ID: 21895974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thyrotropin Releasing Hormone (TRH) in goldfish (Carassius auratus): role in the regulation of feeding and locomotor behaviors and interactions with the orexin system and cocaine- and amphetamine regulated transcript (CART).
    Abbott M; Volkoff H
    Horm Behav; 2011 Feb; 59(2):236-45. PubMed ID: 21192941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.