BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27271800)

  • 1. A proton therapy system in Nagoya Proton Therapy Center.
    Toshito T; Omachi C; Kibe Y; Sugai H; Hayashi K; Shibata H; Yasui K; Tanaka K; Yamamoto T; Yoshida A; Nikawa E; Asai K; Shimomura A; Okumura I; Suzuki T; Kinou H; Isoyama S; Ogino H; Iwata H; Shibamoto Y; Mizoe J
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):645-54. PubMed ID: 27271800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The M. D. Anderson proton therapy system.
    Smith A; Gillin M; Bues M; Zhu XR; Suzuki K; Mohan R; Woo S; Lee A; Komaki R; Cox J; Hiramoto K; Akiyama H; Ishida T; Sasaki T; Matsuda K
    Med Phys; 2009 Sep; 36(9):4068-83. PubMed ID: 19810479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a golden beam data set for the commissioning of a proton double-scattering system in a pencil-beam dose calculation algorithm.
    Slopsema RL; Lin L; Flampouri S; Yeung D; Li Z; McDonough JE; Palta J
    Med Phys; 2014 Sep; 41(9):091710. PubMed ID: 25186385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.
    Masood U; Cowan TE; Enghardt W; Hofmann KM; Karsch L; Kroll F; Schramm U; Wilkens JJ; Pawelke J
    Phys Med Biol; 2017 Jul; 62(13):5531-5555. PubMed ID: 28609301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A patient-specific aperture system with an energy absorber for spot scanning proton beams: Verification for clinical application.
    Yasui K; Toshito T; Omachi C; Kibe Y; Hayashi K; Shibata H; Tanaka K; Nikawa E; Asai K; Shimomura A; Kinou H; Isoyama S; Fujii Y; Takayanagi T; Hirayama S; Nagamine Y; Shibamoto Y; Komori M; Mizoe JE
    Med Phys; 2015 Dec; 42(12):6999-7010. PubMed ID: 26632055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The first private-hospital based proton therapy center in Korea; status of the Proton Therapy Center at Samsung Medical Center.
    Chung K; Han Y; Kim J; Ahn SH; Ju SG; Jung SH; Chung Y; Cho S; Jo K; Shin EH; Hong CS; Shin JS; Park S; Kim DH; Kim HY; Lee B; Shibagaki G; Nonaka H; Sasai K; Koyabu Y; Choi C; Huh SJ; Ahn YC; Pyo HR; Lim DH; Park HC; Park W; Oh DR; Noh JM; Yu JI; Song S; Lee JE; Lee B; Choi DH
    Radiat Oncol J; 2015 Dec; 33(4):337-43. PubMed ID: 26756034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams.
    Zheng Y; Liu Y; Zeidan O; Schreuder AN; Keole S
    Med Phys; 2012 Jun; 39(6):3484-92. PubMed ID: 22755728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reassessment of the Necessity of the Proton Gantry: Analysis of Beam Orientations From 4332 Treatments at the Massachusetts General Hospital Proton Center Over the Past 10 Years.
    Yan S; Lu HM; Flanz J; Adams J; Trofimov A; Bortfeld T
    Int J Radiat Oncol Biol Phys; 2016 May; 95(1):224-233. PubMed ID: 26611874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Commissioning of a proton gantry equipped with dual x-ray imagers and a robotic patient positioner, and evaluation of the accuracy of single-beam image registration for this system.
    Wang N; Ghebremedhin A; Patyal B
    Med Phys; 2015 Jun; 42(6):2979-91. PubMed ID: 26127051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary investigations for the option to use fast uniform scanning with compensators on a gantry designed for IMPT.
    Zenklusen SM; Pedroni E; Meer D; Bula C; Safai S
    Med Phys; 2011 Sep; 38(9):5208-16. PubMed ID: 21978065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of beam efficiency through the patient-specific collimator on secondary neutron dose equivalent in double scattering and uniform scanning modes of proton therapy.
    Hecksel D; Anferov V; Fitzek M; Shahnazi K
    Med Phys; 2010 Jun; 37(6):2910-7. PubMed ID: 20632602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of diverging apertures to minimize the edge scatter in passive scattering proton therapy.
    Zhao T; Cai B; Sun B; Grantham K; Mutic S; Klein E
    J Appl Clin Med Phys; 2015 Sep; 16(5):367–372. PubMed ID: 26699327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations in proton scanned beam dose delivery due to uncertainties in magnetic beam steering.
    Peterson S; Polf J; Ciangaru G; Frank SJ; Bues M; Smith A
    Med Phys; 2009 Aug; 36(8):3693-702. PubMed ID: 19746802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of treatment process time and throughput capacity for spot scanning proton therapy.
    Suzuki K; Palmer MB; Sahoo N; Zhang X; Poenisch F; Mackin DS; Liu AY; Wu R; Zhu XR; Frank SJ; Gillin MT; Lee AK
    Med Phys; 2016 Jul; 43(7):3975. PubMed ID: 27370116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of a real-time tumor monitoring system into gated proton spot-scanning beam therapy: an initial phantom study using patient tumor trajectory data.
    Matsuura T; Miyamoto N; Shimizu S; Fujii Y; Umezawa M; Takao S; Nihongi H; Toramatsu C; Sutherland K; Suzuki R; Ishikawa M; Kinoshita R; Maeda K; Umegaki K; Shirato H
    Med Phys; 2013 Jul; 40(7):071729. PubMed ID: 23822433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of beam parameters and treatment planning for intensity modulated proton therapy.
    Trofimov A; Bortfeld T
    Technol Cancer Res Treat; 2003 Oct; 2(5):437-44. PubMed ID: 14529308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton Therapy Facility Planning From a Clinical and Operational Model.
    Das IJ; Moskvin VP; Zhao Q; Cheng CW; Johnstone PA
    Technol Cancer Res Treat; 2015 Oct; 14(5):635-41. PubMed ID: 24988058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Monte Carlo study on the collimation of pencil beam scanning proton therapy beams.
    Charlwood FC; Aitkenhead AH; Mackay RI
    Med Phys; 2016 Mar; 43(3):1462-72. PubMed ID: 26936730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility studies of a passive scatter proton therapy nozzle without a range modulator wheel.
    Harvey MC; Polf JC; Smith AR; Mohan R
    Med Phys; 2008 Jun; 35(6):2243-52. PubMed ID: 18649454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large energy acceptance gantry for proton therapy utilizing superconducting technology.
    Nesteruk KP; Calzolaio C; Meer D; Rizzoglio V; Seidel M; Schippers JM
    Phys Med Biol; 2019 Aug; 64(17):175007. PubMed ID: 31272087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.