BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27271815)

  • 1. Ontogenetic shifts in fishes between vegetated and unvegetated tidepools: assessing the effect of physical structure on fish habitat selection.
    Oliveira RR; Macieira RM; Giarrizzo T
    J Fish Biol; 2016 Jul; 89(1):959-76. PubMed ID: 27271815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for habitat-driven segregation of an estuarine fish assemblage.
    Loureiro SN; Reis-Filho JA; Giarrizzo T
    J Fish Biol; 2016 Jul; 89(1):804-20. PubMed ID: 27401483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Habitat use by fishes in coral reefs, seagrass beds and mangrove habitats in the Philippines.
    Honda K; Nakamura Y; Nakaoka M; Uy WH; Fortes MD
    PLoS One; 2013; 8(8):e65735. PubMed ID: 23976940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal and spatial ontogenetic movements of Gerreidae in a Brazilian tropical estuarine ecocline and its application for nursery habitat conservation.
    Ramos JA; Barletta M; Dantas DV; Costa MF
    J Fish Biol; 2016 Jul; 89(1):696-712. PubMed ID: 26887637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coastal fish assemblages reflect marine habitat connectivity and ontogenetic shifts in an estuary-bay-continental shelf gradient.
    Reis-Filho JA; Schmid K; Harvey ES; Giarrizzo T
    Mar Environ Res; 2019 Jun; 148():57-66. PubMed ID: 31102903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Living shorelines can enhance the nursery role of threatened estuarine habitats.
    Gittman RK; Peterson CH; Currin CA; Fodrie FJ; Piehler MF; Bruno JF
    Ecol Appl; 2016 Jan; 26(1):249-63. PubMed ID: 27039523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns in diversity and species composition in soft-sediment tidepool fishes across topographical types: Implications for conservation with spatial nuances.
    Kunishima T; Tachihara K
    Mar Environ Res; 2021 Aug; 170():105442. PubMed ID: 34364058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial variation in density and size structure indicate habitat selection throughout life stages of two Southwestern Atlantic snappers.
    Aschenbrenner A; Hackradt CW; Ferreira BP
    Mar Environ Res; 2016 Feb; 113():49-55. PubMed ID: 26599976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High site fidelity and low site connectivity in temperate salt marsh fish populations: a stable isotope approach.
    Green BC; Smith DJ; Grey J; Underwood GJ
    Oecologia; 2012 Jan; 168(1):245-55. PubMed ID: 21786154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A long-term monitoring dataset of fish assemblages in rocky tidepools on the northern coast of Taiwan.
    Ho LT; Wang SC; Shao KT; Chen IS; Chen H
    Sci Data; 2020 Mar; 7(1):84. PubMed ID: 32152315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.
    Serafy JE; Shideler GS; Araújo RJ; Nagelkerken I
    PLoS One; 2015; 10(11):e0142022. PubMed ID: 26536478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visitor impact on rocky shore communities of Qeshm Island, the Persian Gulf, Iran.
    Pour FA; Shokri MR; Abtahi B
    Environ Monit Assess; 2013 Feb; 185(2):1859-71. PubMed ID: 22580792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing ontogenetic habitat shifts in marine fishes: advancing nascent methods for marine spatial management.
    Galaiduk R; Radford BT; Saunders BJ; Newman SJ; Harvey ES
    Ecol Appl; 2017 Sep; 27(6):1776-1788. PubMed ID: 28452413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fish community structure and its seasonal change in subtidal sandy beach habitat off southern Gouqi Island].
    Wang ZH; Wang K; Zhao J; Zhang SY
    Ying Yong Sheng Tai Xue Bao; 2011 May; 22(5):1332-42. PubMed ID: 21812314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ontogenetic and seasonal shifts in the diet of the pemecou sea catfish Sciades herzbergii (Siluriformes: Ariidae), from a macrotidal mangrove creek in the Curuçá estuary, northern Brazil.
    Giarrizzo T; Saint-Paul U
    Rev Biol Trop; 2008 Jun; 56(2):861-73. PubMed ID: 19256449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dry season habitat use of fishes in an Australian tropical river.
    Keller K; Allsop Q; Brim Box J; Buckle D; Crook DA; Douglas MM; Jackson S; Kennard MJ; Luiz OJ; Pusey BJ; Townsend SA; King AJ
    Sci Rep; 2019 Apr; 9(1):5677. PubMed ID: 30952875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change.
    Guo H; Zhang Y; Lan Z; Pennings SC
    Glob Chang Biol; 2013 Sep; 19(9):2765-74. PubMed ID: 23580161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of salt marsh mosquito populations by the 18.6-yr lunar-nodal cycle.
    Rochlin I; Morris JT
    Ecology; 2017 Aug; 98(8):2059-2068. PubMed ID: 28418218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States.
    Osland MJ; Enwright N; Day RH; Doyle TW
    Glob Chang Biol; 2013 May; 19(5):1482-94. PubMed ID: 23504931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal distribution of fish larvae in mangrove-seagrass seascapes of Zanzibar (Tanzania).
    Tarimo B; Winder M; Mtolera MSP; Muhando CA; Gullström M
    Sci Rep; 2022 Mar; 12(1):4196. PubMed ID: 35264688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.