BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27271822)

  • 1. iNuc-STNC: a sequence-based predictor for identification of nucleosome positioning in genomes by extending the concept of SAAC and Chou's PseAAC.
    Tahir M; Hayat M
    Mol Biosyst; 2016 Jul; 12(8):2587-93. PubMed ID: 27271822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iNuc-ext-PseTNC: an efficient ensemble model for identification of nucleosome positioning by extending the concept of Chou's PseAAC to pseudo-tri-nucleotide composition.
    Tahir M; Hayat M; Khan SA
    Mol Genet Genomics; 2019 Feb; 294(1):199-210. PubMed ID: 30291426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition.
    Guo SH; Deng EZ; Xu LQ; Ding H; Lin H; Chen W; Chou KC
    Bioinformatics; 2014 Jun; 30(11):1522-9. PubMed ID: 24504871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. iMem-2LSAAC: A two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into chou's pseudo amino acid composition.
    Arif M; Hayat M; Jan Z
    J Theor Biol; 2018 Apr; 442():11-21. PubMed ID: 29337263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iMethyl-STTNC: Identification of N
    Akbar S; Hayat M
    J Theor Biol; 2018 Oct; 455():205-211. PubMed ID: 30031793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iNuc-PhysChem: a sequence-based predictor for identifying nucleosomes via physicochemical properties.
    Chen W; Lin H; Feng PM; Ding C; Zuo YC; Chou KC
    PLoS One; 2012; 7(10):e47843. PubMed ID: 23144709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DPP-PseAAC: A DNA-binding protein prediction model using Chou's general PseAAC.
    Rahman MS; Shatabda S; Saha S; Kaykobad M; Rahman MS
    J Theor Biol; 2018 Sep; 452():22-34. PubMed ID: 29753757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Protein Submitochondrial Locations by Incorporating Dipeptide Composition into Chou's General Pseudo Amino Acid Composition.
    Ahmad K; Waris M; Hayat M
    J Membr Biol; 2016 Jun; 249(3):293-304. PubMed ID: 26746980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples.
    Kabir M; Hayat M
    Mol Genet Genomics; 2016 Feb; 291(1):285-96. PubMed ID: 26319782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Identification of nucleosome positioning using support vector machine method based on comprehensive DNA sequence feature].
    Cui Y; Xu Z; Li J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Jun; 37(3):496-501. PubMed ID: 32597092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MFSC: Multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou's PseAAC components.
    Ahmad J; Hayat M
    J Theor Biol; 2019 Feb; 463():99-109. PubMed ID: 30562500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of membrane protein types using Voting Feature Interval in combination with Chou's Pseudo Amino Acid Composition.
    Ali F; Hayat M
    J Theor Biol; 2015 Nov; 384():78-83. PubMed ID: 26297889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NucPosPred: Predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC.
    Jia C; Yang Q; Zou Q
    J Theor Biol; 2018 Aug; 450():15-21. PubMed ID: 29678692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of nucleosome positioning in genomes: limits and perspectives of physical and bioinformatic approaches.
    De Santis P; Morosetti S; Scipioni A
    J Biomol Struct Dyn; 2010 Jun; 27(6):747-64. PubMed ID: 20232931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence based predictor for discrimination of enhancer and their types by applying general form of Chou's trinucleotide composition.
    Tahir M; Hayat M; Kabir M
    Comput Methods Programs Biomed; 2017 Jul; 146():69-75. PubMed ID: 28688491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discriminating protein structure classes by incorporating Pseudo Average Chemical Shift to Chou's general PseAAC and Support Vector Machine.
    Hayat M; Iqbal N
    Comput Methods Programs Biomed; 2014 Oct; 116(3):184-92. PubMed ID: 24997484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model.
    Khan ZU; Hayat M; Khan MA
    J Theor Biol; 2015 Jan; 365():197-203. PubMed ID: 25452135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Heat Shock Protein families and J-protein types by incorporating Dipeptide Composition into Chou's general PseAAC.
    Ahmad S; Kabir M; Hayat M
    Comput Methods Programs Biomed; 2015 Nov; 122(2):165-74. PubMed ID: 26233307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PseDNA-Pro: DNA-Binding Protein Identification by Combining Chou's PseAAC and Physicochemical Distance Transformation.
    Liu B; Xu J; Fan S; Xu R; Zhou J; Wang X
    Mol Inform; 2015 Jan; 34(1):8-17. PubMed ID: 27490858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deformation energy-based model for predicting nucleosome dyads and occupancy.
    Liu G; Xing Y; Zhao H; Wang J; Shang Y; Cai L
    Sci Rep; 2016 Apr; 6():24133. PubMed ID: 27053067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.