BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27271822)

  • 21. Cracking the chromatin code: precise rule of nucleosome positioning.
    Trifonov EN
    Phys Life Rev; 2011 Mar; 8(1):39-50. PubMed ID: 21295529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting nucleosome positioning based on geometrically transformed Tsallis entropy.
    Wu J; Zhang Y; Mu Z
    PLoS One; 2014; 9(11):e109395. PubMed ID: 25380134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Re-cracking the nucleosome positioning code.
    Segal MR
    Stat Appl Genet Mol Biol; 2008; 7(1):Article14. PubMed ID: 18454729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using Chou's pseudo amino acid composition to predict protein quaternary structure: a sequence-segmented PseAAC approach.
    Zhang SW; Chen W; Yang F; Pan Q
    Amino Acids; 2008 Oct; 35(3):591-8. PubMed ID: 18427713
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-range correlations between DNA bending sites: relation to the structure and dynamics of nucleosomes.
    Audit B; Vaillant C; Arneodo A; d'Aubenton-Carafa Y; Thermes C
    J Mol Biol; 2002 Mar; 316(4):903-18. PubMed ID: 11884131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting nucleosome-positioning signals: comment on "Cracking the chromatin code: precise rule of nucleosome positioning" by E.N. Trifonov.
    Bina M
    Phys Life Rev; 2011 Mar; 8(1):59-61; discussion 69-72. PubMed ID: 21292574
    [No Abstract]   [Full Text] [Related]  

  • 27. A statistical thermodynamic approach for predicting the sequence-dependent nucleosome positioning along genomes.
    Scipioni A; Morosetti S; De Santis P
    Biopolymers; 2009 Dec; 91(12):1143-53. PubMed ID: 19598227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. iRSpot-ADPM: Identify recombination spots by incorporating the associated dinucleotide product model into Chou's pseudo components.
    Zhang L; Kong L
    J Theor Biol; 2018 Mar; 441():1-8. PubMed ID: 29305179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition.
    Huang YA; You ZH; Chen X; Yan GY
    BMC Syst Biol; 2016 Dec; 10(Suppl 4):120. PubMed ID: 28155718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting nucleosome positioning in genomes: physical and bioinformatic approaches.
    Scipioni A; De Santis P
    Biophys Chem; 2011 May; 155(2-3):53-64. PubMed ID: 21482020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleosome positioning patterns derived from human apoptotic nucleosomes.
    Frenkel ZM; Trifonov EN; Volkovich Z; Bettecken T
    J Biomol Struct Dyn; 2011 Dec; 29(3):577-83. PubMed ID: 22066542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational analysis of nucleosome positioning.
    Tirosh I
    Methods Mol Biol; 2012; 833():443-9. PubMed ID: 22183610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequence-dependent nucleosome positioning.
    Chung HR; Vingron M
    J Mol Biol; 2009 Mar; 386(5):1411-22. PubMed ID: 19070622
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unb-DPC: Identify mycobacterial membrane protein types by incorporating un-biased dipeptide composition into Chou's general PseAAC.
    Khan M; Hayat M; Khan SA; Iqbal N
    J Theor Biol; 2017 Feb; 415():13-19. PubMed ID: 27939596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The nature of DNA sequence preferences for nucleosome positioning. Comment on 'Cracking the chromatin code: precise rule of nucleosome positioning' by Trifonov.
    Travers A
    Phys Life Rev; 2011 Mar; 8(1):53-5; discussion 69-72. PubMed ID: 21292572
    [No Abstract]   [Full Text] [Related]  

  • 36. "iSS-Hyb-mRMR": Identification of splicing sites using hybrid space of pseudo trinucleotide and pseudo tetranucleotide composition.
    Iqbal M; Hayat M
    Comput Methods Programs Biomed; 2016 May; 128():1-11. PubMed ID: 27040827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The molecular evolution of nucleosome positioning through sequence-dependent deformation of the DNA polymer.
    Babbitt GA; Tolstorukov MY; Kim Y
    J Biomol Struct Dyn; 2010 Jun; 27(6):765-80. PubMed ID: 20232932
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning.
    Thåström A; Bingham LM; Widom J
    J Mol Biol; 2004 May; 338(4):695-709. PubMed ID: 15099738
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Archaeal histone selection of nucleosome positioning sequences and the procaryotic origin of histone-dependent genome evolution.
    Bailey KA; Pereira SL; Widom J; Reeve JN
    J Mol Biol; 2000 Oct; 303(1):25-34. PubMed ID: 11021967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. iNR-2L: A two-level sequence-based predictor developed via Chou's 5-steps rule and general PseAAC for identifying nuclear receptors and their families.
    Kabir M; Ahmad S; Iqbal M; Hayat M
    Genomics; 2020 Jan; 112(1):276-285. PubMed ID: 30779939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.