These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27271850)

  • 1. Head and Tibial Acceleration as a Function of Stride Frequency and Visual Feedback during Running.
    Busa MA; Lim J; van Emmerik RE; Hamill J
    PLoS One; 2016; 11(6):e0157297. PubMed ID: 27271850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive changes in running kinematics as a function of head stability demands and their effect on shock transmission.
    Lim J; Busa MA; van Emmerik REA; Hamill J
    J Biomech; 2017 Feb; 52():122-129. PubMed ID: 28065472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of visual focus on spatio-temporal and kinematic parameters of treadmill running.
    Lucas-Cuevas ÁG; Priego Quesada JI; Gooding J; Lewis MGC; Encarnación-Martínez A; Perez-Soriano P
    Gait Posture; 2018 Jan; 59():292-297. PubMed ID: 28754421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between shock attenuation and stride length during running at different velocities.
    Mercer JA; Vance J; Hreljac A; Hamill J
    Eur J Appl Physiol; 2002 Aug; 87(4-5):403-8. PubMed ID: 12172880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in coordination and variability during running as a function of head stability demands.
    Lim J; Hamill J; Busa MA; van Emmerik REA
    Hum Mov Sci; 2020 Oct; 73():102673. PubMed ID: 32777666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tibial acceleration and shock attenuation while running over different surfaces in a trail environment.
    Garcia MC; Gust G; Bazett-Jones DM
    J Sci Med Sport; 2021 Nov; 24(11):1161-1165. PubMed ID: 33766445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of custom-made and prefabricated insoles before and after an intense run.
    Lucas-Cuevas AG; Camacho-García A; Llinares R; Priego Quesada JI; Llana-Belloch S; Pérez-Soriano P
    PLoS One; 2017; 12(2):e0173179. PubMed ID: 28245273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reducing impact loading during running with the use of real-time visual feedback.
    Crowell HP; Milner CE; Hamill J; Davis IS
    J Orthop Sports Phys Ther; 2010 Apr; 40(4):206-13. PubMed ID: 20357417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical Outcomes Due to Impact Loading in Runners While Looking Sideways.
    Mangubat ALS; Zhang JH; Chan ZY; MacPhail AJ; Au IP; Cheung RT
    J Appl Biomech; 2018 Dec; 34(6):483-487. PubMed ID: 29989456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of attachment methods of skin mounted inertial measurement units on tibial accelerations.
    Johnson CD; Outerleys J; Tenforde AS; Davis IS
    J Biomech; 2020 Dec; 113():110118. PubMed ID: 33197691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tibial Acceleration during Running Is Higher in Field Testing Than Indoor Testing.
    Milner CE; Hawkins JL; Aubol KG
    Med Sci Sports Exerc; 2020 Jun; 52(6):1361-1366. PubMed ID: 31913243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running.
    Giandolini M; Horvais N; Rossi J; Millet GY; Samozino P; Morin JB
    J Biomech; 2016 Jun; 49(9):1765-1771. PubMed ID: 27087676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact Acceleration During Prolonged Running While Wearing Conventional Versus Minimalist Shoes.
    Izquierdo-Renau M; Queralt A; Encarnación-Martínez A; Perez-Soriano P
    Res Q Exerc Sport; 2021 Mar; 92(1):182-188. PubMed ID: 32097102
    [No Abstract]   [Full Text] [Related]  

  • 14. Impact accelerations during a prolonged run using a microwavable self-customised foot orthosis.
    Jimenez-Perez I; Priego-Quesada JI; Camacho-García A; Cibrián Ortiz de Anda RM; Pérez-Soriano P
    Sports Biomech; 2024 Jul; 23(7):935-948. PubMed ID: 34126852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion.
    Mulavara AP; Bloomberg JJ
    J Vestib Res; 2002-2003; 12(5-6):255-69. PubMed ID: 14501102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can Trained Runners Effectively Attenuate Impact Acceleration During Repeated High-Intensity Running Bouts?
    Clansey AC; Lake MJ; Wallace ES; Feehally T; Hanlon M
    J Appl Biomech; 2016 Jun; 32(3):261-8. PubMed ID: 26695109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of three different running gait cues on vertical tibial acceleration.
    Anderson LM; Bonanno DR; Sritharan P; Menz HB
    Gait Posture; 2024 Feb; 108():164-169. PubMed ID: 38096737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The location of the tibial accelerometer does influence impact acceleration parameters during running.
    Lucas-Cuevas AG; Encarnación-Martínez A; Camacho-García A; Llana-Belloch S; Pérez-Soriano P
    J Sports Sci; 2017 Sep; 35(17):1734-1738. PubMed ID: 27690754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying and correcting for speed and stride frequency effects on running mechanics in fatiguing outdoor running.
    Zandbergen MA; Buurke JH; Veltink PH; Reenalda J
    Front Sports Act Living; 2023; 5():1085513. PubMed ID: 37139307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of running velocity on resultant tibial acceleration in runners.
    Sheerin KR; Besier TF; Reid D
    Sports Biomech; 2020 Dec; 19(6):750-760. PubMed ID: 30537920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.