These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 27271904)
41. Endothelial distribution of the membrane water channel molecule aquaporin-1: implications for tissue and lymph fluid physiology? Gannon BJ; Carati CJ Lymphat Res Biol; 2003; 1(1):55-66. PubMed ID: 15624322 [TBL] [Abstract][Full Text] [Related]
43. Microanatomy of lymphocyte-endothelial interactions at the high endothelial venules of lymph nodes. Tohya K; Umemoto E; Miyasaka M Histol Histopathol; 2010 Jun; 25(6):781-94. PubMed ID: 20376785 [TBL] [Abstract][Full Text] [Related]
44. Afferent and efferent interfaces of lymph nodes are distinguished by expression of lymphatic endothelial markers and chemokines. Pegu A; Flynn JL; Reinhart TA Lymphat Res Biol; 2007; 5(2):91-103. PubMed ID: 17935477 [TBL] [Abstract][Full Text] [Related]
45. Scanning electron microscope studies of the rat mesenteric lymph node with special reference to high-endothelial venules and hitherto unknown lymphatic labyrinth. He Y Arch Histol Jpn; 1985 Feb; 48(1):1-15. PubMed ID: 4015330 [TBL] [Abstract][Full Text] [Related]
46. Exit of recirculating lymphocytes from lymph nodes is directed by specific exit signals. Binns RM; Licence ST Eur J Immunol; 1990 Feb; 20(2):449-52. PubMed ID: 2311651 [TBL] [Abstract][Full Text] [Related]
47. Lymphatic endothelial cells of the lymph node. Jalkanen S; Salmi M Nat Rev Immunol; 2020 Sep; 20(9):566-578. PubMed ID: 32094869 [TBL] [Abstract][Full Text] [Related]
48. P-selectin glycoprotein ligand-1 mediates L-selectin-independent leukocyte rolling in high endothelial venules of peripheral lymph nodes. Harakawa N; Shigeta A; Wato M; Merrill-Skoloff G; Furie BC; Furie B; Okazaki T; Domae N; Miyasaka M; Hirata T Int Immunol; 2007 Mar; 19(3):321-9. PubMed ID: 17267415 [TBL] [Abstract][Full Text] [Related]
49. Alterations of high endothelial venules in primary and metastatic tumors are correlated with lymph node metastasis of oral and pharyngeal carcinoma. Shen H; Wang X; Shao Z; Liu K; Xia XY; Zhang HZ; Song K; Song Y; Shang ZJ Cancer Biol Ther; 2014 Mar; 15(3):342-9. PubMed ID: 24351553 [TBL] [Abstract][Full Text] [Related]
50. High endothelial venules (HEVs) in immunity, inflammation and cancer. Blanchard L; Girard JP Angiogenesis; 2021 Nov; 24(4):719-753. PubMed ID: 33956259 [TBL] [Abstract][Full Text] [Related]
51. CCR7 essentially contributes to the homing of plasmacytoid dendritic cells to lymph nodes under steady-state as well as inflammatory conditions. Seth S; Oberdörfer L; Hyde R; Hoff K; Thies V; Worbs T; Schmitz S; Förster R J Immunol; 2011 Mar; 186(6):3364-72. PubMed ID: 21296980 [TBL] [Abstract][Full Text] [Related]
52. In vivo high spatiotemporal resolution visualization of circulating T lymphocytes in high endothelial venules of lymph nodes. Choe K; Hwang Y; Seo H; Kim P J Biomed Opt; 2013 Mar; 18(3):036005. PubMed ID: 23462969 [TBL] [Abstract][Full Text] [Related]
53. Characterization of Leptin Receptor Jiang L; Yilmaz M; Uehara M; Cavazzoni CB; Kasinath V; Zhao J; Naini SM; Li X; Banouni N; Fiorina P; Shin SR; Tullius SG; Bromberg JS; Sage PT; Abdi R Front Immunol; 2021; 12():730438. PubMed ID: 35111151 [TBL] [Abstract][Full Text] [Related]
54. CD44 binds to macrophage mannose receptor on lymphatic endothelium and supports lymphocyte migration via afferent lymphatics. Salmi M; Karikoski M; Elima K; Rantakari P; Jalkanen S Circ Res; 2013 Jun; 112(12):1577-82. PubMed ID: 23603511 [TBL] [Abstract][Full Text] [Related]
55. Phenotypically distinct neutrophils patrol uninfected human and mouse lymph nodes. Lok LSC; Dennison TW; Mahbubani KM; Saeb-Parsy K; Chilvers ER; Clatworthy MR Proc Natl Acad Sci U S A; 2019 Sep; 116(38):19083-19089. PubMed ID: 31484769 [TBL] [Abstract][Full Text] [Related]
56. Afferent lymph and lymph borne cells: their influence on lymph node function. Drayson MT; Ford WL Immunobiology; 1984 Dec; 168(3-5):362-79. PubMed ID: 6530238 [TBL] [Abstract][Full Text] [Related]
57. Distinct mechanisms of B and T lymphocyte accumulation generate tumor-draining lymph node hypertrophy. Habenicht LM; Albershardt TC; Iritani BM; Ruddell A Oncoimmunology; 2016 Aug; 5(8):e1204505. PubMed ID: 27622075 [TBL] [Abstract][Full Text] [Related]
58. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. Palframan RT; Jung S; Cheng G; Weninger W; Luo Y; Dorf M; Littman DR; Rollins BJ; Zweerink H; Rot A; von Andrian UH J Exp Med; 2001 Nov; 194(9):1361-73. PubMed ID: 11696600 [TBL] [Abstract][Full Text] [Related]
59. Gene-expression profiling of different arms of lymphatic vasculature identifies candidates for manipulation of cell traffic. Iftakhar-E-Khuda I; Fair-Mäkelä R; Kukkonen-Macchi A; Elima K; Karikoski M; Rantakari P; Miyasaka M; Salmi M; Jalkanen S Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10643-8. PubMed ID: 27601677 [TBL] [Abstract][Full Text] [Related]
60. Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. Gretz JE; Norbury CC; Anderson AO; Proudfoot AE; Shaw S J Exp Med; 2000 Nov; 192(10):1425-40. PubMed ID: 11085745 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]