BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27272188)

  • 1. Global transcriptome analysis for identification of interactions between coding and noncoding RNAs during human erythroid differentiation.
    Ding N; Xi J; Li Y; Xie X; Shi J; Zhang Z; Li Y; Fang F; Wang S; Yue W; Pei X; Fang X
    Front Med; 2016 Sep; 10(3):297-310. PubMed ID: 27272188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive joint analysis of the long and short RNA transcriptomes of human erythrocytes.
    Doss JF; Corcoran DL; Jima DD; Telen MJ; Dave SS; Chi JT
    BMC Genomics; 2015 Nov; 16():952. PubMed ID: 26573221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct gene expression program dynamics during erythropoiesis from human induced pluripotent stem cells compared with adult and cord blood progenitors.
    Merryweather-Clarke AT; Tipping AJ; Lamikanra AA; Fa R; Abu-Jamous B; Tsang HP; Carpenter L; Robson KJ; Nandi AK; Roberts DJ
    BMC Genomics; 2016 Oct; 17(1):817. PubMed ID: 27769165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long noncoding RNAs of single hematopoietic stem and progenitor cells in healthy and dysplastic human bone marrow.
    Wu Z; Gao S; Zhao X; Chen J; Keyvanfar K; Feng X; Kajigaya S; Young NS
    Haematologica; 2019 May; 104(5):894-906. PubMed ID: 30545929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation.
    Alvarez-Dominguez JR; Hu W; Yuan B; Shi J; Park SS; Gromatzky AA; van Oudenaarden A; Lodish HF
    Blood; 2014 Jan; 123(4):570-81. PubMed ID: 24200680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct miRNA Signatures and Networks Discern Fetal from Adult Erythroid Differentiation and Primary from Immortalized Erythroid Cells.
    Papasavva PL; Papaioannou NY; Patsali P; Kurita R; Nakamura Y; Sitarou M; Christou S; Kleanthous M; Lederer CW
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33807258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. lncRNAMap: a map of putative regulatory functions in the long non-coding transcriptome.
    Chan WL; Huang HD; Chang JG
    Comput Biol Chem; 2014 Jun; 50():41-9. PubMed ID: 24525374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory association of long noncoding RNAs and chromatin accessibility facilitates erythroid differentiation.
    Ren Y; Zhu J; Han Y; Li P; Wu J; Qu H; Zhang Z; Fang X
    Blood Adv; 2021 Dec; 5(23):5396-5409. PubMed ID: 34644394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fas-antisense long noncoding RNA is differentially expressed during maturation of human erythrocytes and confers resistance to Fas-mediated cell death.
    Villamizar O; Chambers CB; Mo YY; Torry DS; Hofstrand R; Riberdy JM; Persons DA; Wilber A
    Blood Cells Mol Dis; 2016 May; 58():57-66. PubMed ID: 27067490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the miRNA-mRNA-lncRNA networks in ER+ and ER- breast cancer cell lines.
    Wu Q; Guo L; Jiang F; Li L; Li Z; Chen F
    J Cell Mol Med; 2015 Dec; 19(12):2874-87. PubMed ID: 26416600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WDR82-binding long noncoding RNA lncEry controls mouse erythroid differentiation and maturation.
    Yang S; Sun G; Wu P; Chen C; Kuang Y; Liu L; Zheng Z; He Y; Gu Q; Lu T; Zhu C; Wang F; Gou F; Yang Z; Zhao X; Yuan S; Yang L; Lu S; Li Y; Lv X; Dong F; Ma Y; Yu J; Ng LG; Shi L; Liu J; Shi L; Cheng T; Cheng H
    J Exp Med; 2022 Apr; 219(4):. PubMed ID: 35315911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The developmental transcriptome sequencing of bovine skeletal muscle reveals a long noncoding RNA, lncMD, promotes muscle differentiation by sponging miR-125b.
    Sun X; Li M; Sun Y; Cai H; Lan X; Huang Y; Bai Y; Qi X; Chen H
    Biochim Biophys Acta; 2016 Nov; 1863(11):2835-2845. PubMed ID: 27589905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Identification of Non-coding RNAs.
    Xiao Y; Hu J; Yin W
    Adv Exp Med Biol; 2018; 1094():9-18. PubMed ID: 30191483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct RNA transcriptome patterns are potentially associated with angiogenesis in Tie2-expressing monocytes.
    Wang X; Dai Z; Wu X; Wang K; Wang X
    Gene; 2016 Apr; 580(1):1-7. PubMed ID: 26748243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNAs as components of regulatory networks controlling erythropoiesis.
    Azzouzi I; Schmugge M; Speer O
    Eur J Haematol; 2012 Jul; 89(1):1-9. PubMed ID: 22372390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control.
    Georgantas RW; Hildreth R; Morisot S; Alder J; Liu CG; Heimfeld S; Calin GA; Croce CM; Civin CI
    Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2750-5. PubMed ID: 17293455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNAs are involved in erythroid differentiation control.
    Yang GH; Wang F; Yu J; Wang XS; Yuan JY; Zhang JW
    J Cell Biochem; 2009 Jun; 107(3):548-56. PubMed ID: 19350553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis.
    Choong ML; Yang HH; McNiece I
    Exp Hematol; 2007 Apr; 35(4):551-64. PubMed ID: 17379065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive Analysis of microRNAs in Human Adult Erythropoiesis.
    Nath A; Rayabaram J; Ijee S; Bagchi A; Chaudhury AD; Roy D; Chambayil K; Singh J; Nakamura Y; Velayudhan SR
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional repression of lncRNA and miRNA subsets mediated by LRF during erythropoiesis.
    Athanasopoulou K; Chondrou V; Xiropotamos P; Psarias G; Vasilopoulos Y; Georgakilas GK; Sgourou A
    J Mol Med (Berl); 2023 Sep; 101(9):1097-1112. PubMed ID: 37486375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.