BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 27272206)

  • 1. Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices.
    Gabriel EF; Garcia PT; Cardoso TM; Lopes FM; Martins FT; Coltro WK
    Analyst; 2016 Aug; 141(15):4749-56. PubMed ID: 27272206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout.
    Wang X; Li F; Cai Z; Liu K; Li J; Zhang B; He J
    Anal Bioanal Chem; 2018 Apr; 410(10):2647-2655. PubMed ID: 29455281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of glucose and uric acid with bienzyme colorimetry on microfluidic paper-based analysis devices.
    Chen X; Chen J; Wang F; Xiang X; Luo M; Ji X; He Z
    Biosens Bioelectron; 2012 May; 35(1):363-368. PubMed ID: 22472530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review on Microfluidic Paper-Based Analytical Devices for Glucose Detection.
    Liu S; Su W; Ding X
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27941634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine.
    Zhang H; Smith E; Zhang W; Zhou A
    Biomed Microdevices; 2019 Jun; 21(3):48. PubMed ID: 31183565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis.
    de Oliveira RAG; Camargo F; Pesquero NC; Faria RC
    Anal Chim Acta; 2017 Mar; 957():40-46. PubMed ID: 28107832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review.
    Morbioli GG; Mazzu-Nascimento T; Stockton AM; Carrilho E
    Anal Chim Acta; 2017 Jun; 970():1-22. PubMed ID: 28433054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Multilayered paper- and thread/paper-based microfluidic devices for bioassays.
    Neris NM; Guevara RD; Gonzalez A; Gomez FA
    Electrophoresis; 2019 Jan; 40(2):296-303. PubMed ID: 30383293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous determination of renal function biomarkers in urine using a validated paper-based microfluidic analytical device.
    Rossini EL; Milani MI; Carrilho E; Pezza L; Pezza HR
    Anal Chim Acta; 2018 Jan; 997():16-23. PubMed ID: 29149990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A colorimetric assay for sensitive detection of hydrogen peroxide and glucose in microfluidic paper-based analytical devices integrated with starch-iodide-gelatin system.
    Liu MM; Lian X; Liu H; Guo ZZ; Huang HH; Lei Y; Peng HP; Chen W; Lin XH; Liu AL; Xia XH
    Talanta; 2019 Aug; 200():511-517. PubMed ID: 31036217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salivary diagnostics on paper microfluidic devices and their use as wearable sensors for glucose monitoring.
    de Castro LF; de Freitas SV; Duarte LC; de Souza JAC; Paixão TRLC; Coltro WKT
    Anal Bioanal Chem; 2019 Jul; 411(19):4919-4928. PubMed ID: 30941478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Performance of Colorimetric Biosensing on Paper Microfluidic Platforms Through Chemical Modification and Incorporation of Nanoparticles.
    Gabriel EF; Garcia PT; Evans E; Cardoso TM; Garcia CD; Coltro WK
    Methods Mol Biol; 2017; 1571():327-341. PubMed ID: 28281265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering the Formation of Color Gradients for Glucose Colorimetric Assays on Microfluidic Paper-Based Analytical Devices by Mass Spectrometry Imaging.
    de Freitas SV; de Souza FR; Rodrigues Neto JC; Vasconcelos GA; Abdelnur PV; Vaz BG; Henry CS; Coltro WKT
    Anal Chem; 2018 Oct; 90(20):11949-11954. PubMed ID: 30188682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paper Microfluidics and Tailored Gold Nanoparticles for Nonenzymatic, Colorimetric Multiplex Biomarker Detection.
    Pinheiro T; Marques AC; Carvalho P; Martins R; Fortunato E
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3576-3590. PubMed ID: 33449630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient in situ growth of enzyme-inorganic hybrids on paper strips for the visual detection of glucose.
    Li W; Lu S; Bao S; Shi Z; Lu Z; Li C; Yu L
    Biosens Bioelectron; 2018 Jan; 99():603-611. PubMed ID: 28837924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An instrument-free, screen-printed paper microfluidic device that enables bio and chemical sensing.
    Mohammadi S; Maeki M; Mohamadi RM; Ishida A; Tani H; Tokeshi M
    Analyst; 2015 Oct; 140(19):6493-9. PubMed ID: 26207925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A competitive immunoassay system for microfluidic paper-based analytical detection of small size molecules.
    Busa LS; Mohammadi S; Maeki M; Ishida A; Tani H; Tokeshi M
    Analyst; 2016 Nov; 141(24):6598-6603. PubMed ID: 27858015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distance-Based Tear Lactoferrin Assay on Microfluidic Paper Device Using Interfacial Interactions on Surface-Modified Cellulose.
    Yamada K; Henares TG; Suzuki K; Citterio D
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24864-75. PubMed ID: 26488371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Analytical Performance of Paper Microfluidic Devices by Using Fe3O4 Nanoparticles, MWCNT, and Graphene Oxide.
    Figueredo F; Garcia PT; Cortón E; Coltro WK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):11-5. PubMed ID: 26693736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.