BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

984 related articles for article (PubMed ID: 27272384)

  • 1. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.
    Kim D; Kim J; Hur JK; Been KW; Yoon SH; Kim JS
    Nat Biotechnol; 2016 Aug; 34(8):863-8. PubMed ID: 27272384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells.
    Kleinstiver BP; Tsai SQ; Prew MS; Nguyen NT; Welch MM; Lopez JM; McCaw ZR; Aryee MJ; Joung JK
    Nat Biotechnol; 2016 Aug; 34(8):869-74. PubMed ID: 27347757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.
    Yamano T; Zetsche B; Ishitani R; Zhang F; Nishimasu H; Nureki O
    Mol Cell; 2017 Aug; 67(4):633-645.e3. PubMed ID: 28781234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells.
    Tu M; Lin L; Cheng Y; He X; Sun H; Xie H; Fu J; Liu C; Li J; Chen D; Xi H; Xue D; Liu Q; Zhao J; Gao C; Song Z; Qu J; Gu F
    Nucleic Acids Res; 2017 Nov; 45(19):11295-11304. PubMed ID: 28977650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).
    Singh D; Mallon J; Poddar A; Wang Y; Tippana R; Yang O; Bailey S; Ha T
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5444-5449. PubMed ID: 29735714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mb- and FnCpf1 nucleases are active in mammalian cells: activities and PAM preferences of four wild-type Cpf1 nucleases and of their altered PAM specificity variants.
    Tóth E; Czene BC; Kulcsár PI; Krausz SL; Tálas A; Nyeste A; Varga É; Huszár K; Weinhardt N; Ligeti Z; Borsy AÉ; Fodor E; Welker E
    Nucleic Acids Res; 2018 Nov; 46(19):10272-10285. PubMed ID: 30239882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR/Cpf1-mediated DNA-free plant genome editing.
    Kim H; Kim ST; Ryu J; Kang BC; Kim JS; Kim SG
    Nat Commun; 2017 Feb; 8():14406. PubMed ID: 28205546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing.
    Bayat H; Modarressi MH; Rahimpour A
    Curr Microbiol; 2018 Jan; 75(1):107-115. PubMed ID: 29189942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide specificity of dCpf1 cytidine base editors.
    Kim D; Lim K; Kim DE; Kim JS
    Nat Commun; 2020 Aug; 11(1):4072. PubMed ID: 32792663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into the apo-structure of Cpf1 protein from Francisella novicida.
    Min K; Yoon H; Jo I; Ha NC; Jin KS; Kim JS; Lee HH
    Biochem Biophys Res Commun; 2018 Apr; 498(4):775-781. PubMed ID: 29526756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases.
    Kim D; Hager M; Brant E; Budak H
    Funct Integr Genomics; 2021 Jul; 21(3-4):355-366. PubMed ID: 33710467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cas9, Cpf1 and C2c1/2/3-What's next?
    Nakade S; Yamamoto T; Sakuma T
    Bioengineered; 2017 May; 8(3):265-273. PubMed ID: 28140746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Cpf1-mediated genome editing and gene regulation in human cells.
    Li T; Zhu L; Xiao B; Gong Z; Liao Q; Guo J
    Biotechnol Adv; 2019; 37(1):21-27. PubMed ID: 30399413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing a CRISPR-Cpf1-based genome engineering system for Corynebacterium glutamicum.
    Zhang J; Yang F; Yang Y; Jiang Y; Huo YX
    Microb Cell Fact; 2019 Mar; 18(1):60. PubMed ID: 30909908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Cpf1 variants with altered PAM specificities.
    Gao L; Cox DBT; Yan WX; Manteiga JC; Schneider MW; Yamano T; Nishimasu H; Nureki O; Crosetto N; Zhang F
    Nat Biotechnol; 2017 Aug; 35(8):789-792. PubMed ID: 28581492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.
    Kleinstiver BP; Pattanayak V; Prew MS; Tsai SQ; Nguyen NT; Zheng Z; Joung JK
    Nature; 2016 Jan; 529(7587):490-5. PubMed ID: 26735016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and assessment of engineered CRISPR-Cpf1 and its use for genome editing.
    Li B; Zeng C; Dong Y
    Nat Protoc; 2018 May; 13(5):899-914. PubMed ID: 29622802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo high-throughput profiling of CRISPR-Cpf1 activity.
    Kim HK; Song M; Lee J; Menon AV; Jung S; Kang YM; Choi JW; Woo E; Koh HC; Nam JW; Kim H
    Nat Methods; 2017 Feb; 14(2):153-159. PubMed ID: 27992409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target-dependent nickase activities of the CRISPR-Cas nucleases Cpf1 and Cas9.
    Fu BXH; Smith JD; Fuchs RT; Mabuchi M; Curcuru J; Robb GB; Fire AZ
    Nat Microbiol; 2019 May; 4(5):888-897. PubMed ID: 30833733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic analysis of CRISPR-Cas9 mismatch tolerance reveals low levels of off-target activity.
    Anderson EM; Haupt A; Schiel JA; Chou E; Machado HB; Strezoska Ž; Lenger S; McClelland S; Birmingham A; Vermeulen A; Smith Av
    J Biotechnol; 2015 Oct; 211():56-65. PubMed ID: 26189696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.