These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2727267)

  • 41. Accelerated heavy particles and the lens. VIII. Comparisons between the effects of acute low doses of iron ions (190 keV/microns) and argon ions (88 keV/microns).
    Brenner DJ; Medvedovsky C; Huang Y; Worgul BV
    Radiat Res; 1993 Feb; 133(2):198-203. PubMed ID: 8438061
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Induced radioactivity in CU targets produced by high-energy heavy ions and the corresponding estimated photon dose rates.
    Yashima H; Uwamino Y; Sugita H; Ito S; Nakamura T; Fukumura A
    Radiat Prot Dosimetry; 2004; 112(2):195-208. PubMed ID: 15280565
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. II. Probing individual notI fragments by hybridization.
    Löbrich M; Rydberg B; Cooper PK
    Radiat Res; 1994 Aug; 139(2):142-51. PubMed ID: 8052689
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cell-survival measurements as a function of depth for a high-energy argon-lon beam.
    Raju MR; Bain E; Carpenter SG; Howard J; Lyman JT
    Radiat Res; 1980 Oct; 84(1):158-63. PubMed ID: 7454980
    [No Abstract]   [Full Text] [Related]  

  • 45. Radiolysis of aqueous solutions of 1,1- and 1,2-dichloroethane.
    Pimblott SM; Milosavljevic BH; Laverne JA
    J Phys Chem A; 2005 Nov; 109(45):10294-301. PubMed ID: 16833324
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Relative biological effectiveness of heavy ions in producing mutations, tumors, and growth inhibition in the crucifer plant, Arabidopsis.
    Hirono Y; Smith HH; Lyman JT; Thompson KH; Baum JW
    Radiat Res; 1970 Oct; 44(1):204-23. PubMed ID: 5473393
    [No Abstract]   [Full Text] [Related]  

  • 47. RBE values for radiation-induced growth delay in rat rhabdomyosarcoma tumors exposed to plateau and peak carbon, neon and argon ions.
    Tenforde TS; Tenforde SD; Crabtree KE; Parks DL; Schilling WA; Parr SS; Flynn MJ; Howard J; Lyman JT; Curtis SB
    Int J Radiat Oncol Biol Phys; 1981 Feb; 7(2):217-22. PubMed ID: 7216858
    [No Abstract]   [Full Text] [Related]  

  • 48. Estimation of yields of OH radicals in water irradiated by ionizing radiation.
    Yamaguchi H; Uchihori Y; Yasuda N; Takada M; Kitamura H
    J Radiat Res; 2005 Sep; 46(3):333-41. PubMed ID: 16210790
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biophysical studies with high-energy argon ions 1. Depth dose measurements in tissue-equivalent liquid and in water.
    Goodman LJ; Colvett RD
    Radiat Res; 1977 Jun; 70(3):455-68. PubMed ID: 877224
    [No Abstract]   [Full Text] [Related]  

  • 50. Platzman's analysis of the delivery of radiation energy to molecules.
    Fano U
    Radiat Res; 1975 Nov; 64(2):217-32. PubMed ID: 1197634
    [No Abstract]   [Full Text] [Related]  

  • 51. Rapid development of corneal lesions in rats produced by heavy ions.
    Nelson AC; Tobias CA
    Adv Space Res; 1983; 3(8):195-209. PubMed ID: 11542747
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photochemistry of the ozone-water complex in cryogenic neon, argon, and krypton matrixes.
    Tsuge M; Tsuji K; Kawai A; Shibuya K
    J Phys Chem A; 2013 Dec; 117(49):13105-11. PubMed ID: 24252115
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rejoining capacity of DNA breaks induced by accelerated carbon and neon ions in the spread Bragg peak.
    Roots R; Yang TC; Craise L; Blakely EA; Tobias CA
    Int J Radiat Biol Relat Stud Phys Chem Med; 1980 Aug; 38(2):203-10. PubMed ID: 6968739
    [No Abstract]   [Full Text] [Related]  

  • 54. Acceleration of argon ions to 1.17x1010 electron volts.
    Isaila MV; Schimmerling W; Vosburgh KG; White MG; Filz RC; McNulty PJ
    Science; 1972 Aug; 177(4047):424-5. PubMed ID: 17796633
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The dependece of self-focusing of a high-intensity pulsed electron beam on gaseous media as studied by depth-dose distributions. I. Hydrogen and monatomic gases.
    Hotta H; Tanaka R; Sunaga H; Arai H
    Radiat Res; 1975 Jul; 63(1):24-31. PubMed ID: 1144680
    [No Abstract]   [Full Text] [Related]  

  • 56. Imaging of the structure of the argon and neon dimer, trimer, and tetramer.
    Ulrich B; Vredenborg A; Malakzadeh A; Schmidt LP; Havermeier T; Meckel M; Cole K; Smolarski M; Chang Z; Jahnke T; Dörner R
    J Phys Chem A; 2011 Jun; 115(25):6936-41. PubMed ID: 21413773
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Radiation-quality-dependent bystander cellular effects induced by heavy-ion microbeams through different pathways.
    Suzuki M; Funayama T; Suzuki M; Kobayashi Y
    J Radiat Res; 2023 Sep; 64(5):824-832. PubMed ID: 37658690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Damage study of irradiated tungsten and copper using proton and argon ions of a plasma focus device.
    Seyedhabashi MM; Tafreshi MA; Shirani Bidabadi B; Shafiei S; Abdisaray A
    Appl Radiat Isot; 2019 Dec; 154():108875. PubMed ID: 31470188
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electron-capture cross sections for low-energy highly charged neon and argon ions from molecular and atomic hydrogen.
    Can C; Gray TJ; Varghese SL; Hall JM; Tunnell LN
    Phys Rev A Gen Phys; 1985 Jan; 31(1):72-83. PubMed ID: 9895455
    [No Abstract]   [Full Text] [Related]  

  • 60. A Potential Renewed Use of Very Heavy Ions for Therapy: Neon Minibeam Radiation Therapy.
    Prezado Y; Hirayama R; Matsufuji N; Inaniwa T; Martínez-Rovira I; Seksek O; Bertho A; Koike S; Labiod D; Pouzoulet F; Polledo L; Warfving N; Liens A; Bergs J; Shimokawa T
    Cancers (Basel); 2021 Mar; 13(6):. PubMed ID: 33802835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.