These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 27272903)
1. Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration. Gupta V; Lyne DV; Barragan M; Berkland CJ; Detamore MS J Mater Sci Mater Med; 2016 Jul; 27(7):121. PubMed ID: 27272903 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and characterization of poly(lactic-co-glycolic acid) microsphere/amorphous calcium phosphate scaffolds. Popp JR; Laflin KE; Love BJ; Goldstein AS J Tissue Eng Regen Med; 2012 Jan; 6(1):12-20. PubMed ID: 21312335 [TBL] [Abstract][Full Text] [Related]
3. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study. Chen SH; Wang XL; Xie XH; Zheng LZ; Yao D; Wang DP; Leng Y; Zhang G; Qin L Acta Biomater; 2012 Aug; 8(8):3128-37. PubMed ID: 22543006 [TBL] [Abstract][Full Text] [Related]
4. Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres. Son JS; Appleford M; Ong JL; Wenke JC; Kim JM; Choi SH; Oh DS J Control Release; 2011 Jul; 153(2):133-40. PubMed ID: 21420453 [TBL] [Abstract][Full Text] [Related]
5. Osteogenic differentiation of human bone marrow stromal cells in hydroxyapatite-loaded microsphere-based scaffolds. Dormer NH; Qiu Y; Lydick AM; Allen ND; Mohan N; Berkland CJ; Detamore MS Tissue Eng Part A; 2012 Apr; 18(7-8):757-67. PubMed ID: 21992088 [TBL] [Abstract][Full Text] [Related]
6. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062 [TBL] [Abstract][Full Text] [Related]
7. Subcritical CO2 sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering. Bhamidipati M; Sridharan B; Scurto AM; Detamore MS Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4892-9. PubMed ID: 24094202 [TBL] [Abstract][Full Text] [Related]
8. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content. He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617 [TBL] [Abstract][Full Text] [Related]
9. Preparation and Characterization of Surface Heat Sintered Nanohydroxyapatite and Nanowhitlockite Embedded Poly (Lactic-co-glycolic Acid) Microsphere Bone Graft Scaffolds: In Vitro and in Vivo Studies. Jose G; Shalumon KT; Liao HT; Kuo CY; Chen JP Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31947689 [TBL] [Abstract][Full Text] [Related]
10. Ti Gu C; Chen H; Zhao Y; Xi H; Tan X; Xue P; Sun G; Jiang X; Du B; Liu X Biomed Mater; 2024 Aug; 19(5):. PubMed ID: 39121886 [TBL] [Abstract][Full Text] [Related]
11. Bone morphogenetic protein-2 loaded poly(D,L-lactide-co-glycolide) microspheres enhance osteogenic potential of gelatin/hydroxyapatite/β-tricalcium phosphate cryogel composite for alveolar ridge augmentation. Chang HC; Yang C; Feng F; Lin FH; Wang CH; Chang PC J Formos Med Assoc; 2017 Dec; 116(12):973-981. PubMed ID: 28256366 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model. Won JY; Park CY; Bae JH; Ahn G; Kim C; Lim DH; Cho DW; Yun WS; Shim JH; Huh JB Biomed Mater; 2016 Oct; 11(5):055013. PubMed ID: 27716630 [TBL] [Abstract][Full Text] [Related]
13. An osteoconductive PLGA scaffold with bioactive β-TCP and anti-inflammatory Mg(OH) Go EJ; Kang EY; Lee SK; Park S; Kim JH; Park W; Kim IH; Choi B; Han DK Biomater Sci; 2020 Feb; 8(3):937-948. PubMed ID: 31833498 [TBL] [Abstract][Full Text] [Related]
14. Effect of different sintering methods on bioactivity and release of proteins from PLGA microspheres. Dormer NH; Gupta V; Scurto AM; Berkland CJ; Detamore MS Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4343-51. PubMed ID: 23910352 [TBL] [Abstract][Full Text] [Related]
15. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration. Chen S; Jian Z; Huang L; Xu W; Liu S; Song D; Wan Z; Vaughn A; Zhan R; Zhang C; Wu S; Hu M; Li J Int J Nanomedicine; 2015; 10():3815-27. PubMed ID: 26082632 [TBL] [Abstract][Full Text] [Related]
16. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis. Song JE; Tripathy N; Lee DH; Park JH; Khang G ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112 [TBL] [Abstract][Full Text] [Related]
17. Porous zirconia/hydroxyapatite scaffolds for bone reconstruction. An SH; Matsumoto T; Miyajima H; Nakahira A; Kim KH; Imazato S Dent Mater; 2012 Dec; 28(12):1221-31. PubMed ID: 23018082 [TBL] [Abstract][Full Text] [Related]
18. Accelerating bone regeneration using poly(lactic-co-glycolic acid)/hydroxyapatite scaffolds containing duck feet-derived collagen. Song JE; Lee DH; Khang G; Yoon SJ Int J Biol Macromol; 2023 Feb; 229():486-495. PubMed ID: 36587641 [TBL] [Abstract][Full Text] [Related]
19. Enhanced bone regeneration using an insulin-loaded nano-hydroxyapatite/collagen/PLGA composite scaffold. Wang X; Zhang G; Qi F; Cheng Y; Lu X; Wang L; Zhao J; Zhao B Int J Nanomedicine; 2018; 13():117-127. PubMed ID: 29317820 [TBL] [Abstract][Full Text] [Related]
20. Bone regeneration using a freeze-dried 3D gradient-structured scaffold incorporating OIC-A006-loaded PLGA microspheres based on β-TCP/PLGA. Lin L; Gao H; Dong Y J Mater Sci Mater Med; 2015 Jan; 26(1):5327. PubMed ID: 25577209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]