BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27272910)

  • 1. Tissue culture on a chip: Developmental biology applications of self-organized capillary networks in microfluidic devices.
    Miura T; Yokokawa R
    Dev Growth Differ; 2016 Aug; 58(6):505-15. PubMed ID: 27272910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics.
    Liu W; Wang JC; Wang J
    Lab Chip; 2015 Feb; 15(4):1195-204. PubMed ID: 25571856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CELLS IN THE THIRD DIMENSION.
    Webb S
    Biotechniques; 2017 Mar; 62(3):93-98. PubMed ID: 28298175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organs-on-chips (microphysiological systems): tools to expedite efficacy and toxicity testing in human tissue.
    Fabre KM; Livingston C; Tagle DA
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1073-7. PubMed ID: 24962171
    [No Abstract]   [Full Text] [Related]  

  • 5. Perfusable Vascular Network with a Tissue Model in a Microfluidic Device.
    Nashimoto Y; Teraoka Y; Banan Sadeghian R; Nakamasu A; Arima Y; Hanada S; Kotera H; Nishiyama K; Miura T; Yokokawa R
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29683439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Term Growth of Moss in Microfluidic Devices Enables Subcellular Studies in Development.
    Bascom CS; Wu SZ; Nelson K; Oakey J; Bezanilla M
    Plant Physiol; 2016 Sep; 172(1):28-37. PubMed ID: 27406170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo-crosslinkable hydrogel-based 3D microfluidic culture device.
    Lee Y; Lee JM; Bae PK; Chung IY; Chung BH; Chung BG
    Electrophoresis; 2015 Apr; 36(7-8):994-1001. PubMed ID: 25641332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organ-on-a-chip systems for vascular biology.
    Mandrycky CJ; Howard CC; Rayner SG; Shin YJ; Zheng Y
    J Mol Cell Cardiol; 2021 Oct; 159():1-13. PubMed ID: 34118217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementing oxygen control in chip-based cell and tissue culture systems.
    Oomen PE; Skolimowski MD; Verpoorte E
    Lab Chip; 2016 Sep; 16(18):3394-414. PubMed ID: 27492338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering.
    Perestrelo AR; Águas AC; Rainer A; Forte G
    Sensors (Basel); 2015 Dec; 15(12):31142-70. PubMed ID: 26690442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtechnology-based organ systems and whole-body models for drug screening.
    Lee SH; Ha SK; Choi I; Choi N; Park TH; Sung JH
    Biotechnol J; 2016 Jun; 11(6):746-56. PubMed ID: 27125245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances and future applications of microfluidic live-cell microarrays.
    Rothbauer M; Wartmann D; Charwat V; Ertl P
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):948-61. PubMed ID: 26133396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmentally inspired human 'organs on chips'.
    Ingber DE
    Development; 2018 May; 145(16):. PubMed ID: 29776965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Microfluidic Platform Based on Robust Gas and Liquid Exchange for Long-term Culturing of Explanted Tissues.
    Ota N; Kanda GN; Moriguchi H; Aishan Y; Shen Y; Yamada RG; Ueda HR; Tanaka Y
    Anal Sci; 2019; 35(10):1141-1147. PubMed ID: 31597873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology.
    Nguyen NT; Shaegh SA; Kashaninejad N; Phan DT
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1403-19. PubMed ID: 23726943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine.
    Rodrigues RO; Sousa PC; Gaspar J; Bañobre-López M; Lima R; Minas G
    Small; 2020 Dec; 16(51):e2003517. PubMed ID: 33236819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of stable capillary networks using a microfluidic device.
    Sudo R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():350-3. PubMed ID: 26736271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications.
    Krishna KS; Li Y; Li S; Kumar CS
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1470-95. PubMed ID: 23726944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lab-on-a-chip technologies for stem cell analysis.
    Ertl P; Sticker D; Charwat V; Kasper C; Lepperdinger G
    Trends Biotechnol; 2014 May; 32(5):245-53. PubMed ID: 24726257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.