These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 27272910)

  • 21. Towards embedding Caco-2 model of gut interface in a microfluidic device to enable multi-organ models for systems biology.
    Sakharov D; Maltseva D; Knyazev E; Nikulin S; Poloznikov A; Shilin S; Baranova A; Tsypina I; Tonevitsky A
    BMC Syst Biol; 2019 Mar; 13(Suppl 1):19. PubMed ID: 30836980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in lab-on-a-chip for biosensing applications.
    Lafleur JP; Jönsson A; Senkbeil S; Kutter JP
    Biosens Bioelectron; 2016 Feb; 76():213-33. PubMed ID: 26318580
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic Device to Quantify the Behavior of Therapeutic Bacteria in Three-Dimensional Tumor Tissue.
    Brackett EL; Swofford CA; Forbes NS
    Methods Mol Biol; 2016; 1409():35-48. PubMed ID: 26846800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Vitro Microfluidic Models for Neurodegenerative Disorders.
    Osaki T; Shin Y; Sivathanu V; Campisi M; Kamm RD
    Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 28881425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidic approaches to the study of angiogenesis and the microcirculation.
    Akbari E; Spychalski GB; Song JW
    Microcirculation; 2017 Jul; 24(5):. PubMed ID: 28182312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micro-dissected tumor tissues on chip: an ex vivo method for drug testing and personalized therapy.
    Astolfi M; Péant B; Lateef MA; Rousset N; Kendall-Dupont J; Carmona E; Monet F; Saad F; Provencher D; Mes-Masson AM; Gervais T
    Lab Chip; 2016 Jan; 16(2):312-25. PubMed ID: 26659477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microsensor systems for cell metabolism - from 2D culture to organ-on-chip.
    Kieninger J; Weltin A; Flamm H; Urban GA
    Lab Chip; 2018 May; 18(9):1274-1291. PubMed ID: 29619452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D-templated, fully automated microfluidic input/output multiplexer for endocrine tissue culture and secretion sampling.
    Li X; Brooks JC; Hu J; Ford KI; Easley CJ
    Lab Chip; 2017 Jan; 17(2):341-349. PubMed ID: 27990542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microphysiological modeling of the reproductive tract: a fertile endeavor.
    Eddie SL; Kim JJ; Woodruff TK; Burdette JE
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1192-202. PubMed ID: 24737736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic assay-based optical measurement techniques for cell analysis: A review of recent progress.
    Choi JR; Song H; Sung JH; Kim D; Kim K
    Biosens Bioelectron; 2016 Mar; 77():227-36. PubMed ID: 26409023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Implementing organ-on-chip in a next-generation risk assessment of chemicals: a review.
    Nitsche KS; Müller I; Malcomber S; Carmichael PL; Bouwmeester H
    Arch Toxicol; 2022 Mar; 96(3):711-741. PubMed ID: 35103818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.
    Capretto L; Carugo D; Mazzitelli S; Nastruzzi C; Zhang X
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1496-532. PubMed ID: 23933616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of microscale culture technologies for studying lymphatic vessel biology.
    Chang CW; Seibel AJ; Song JW
    Microcirculation; 2019 Nov; 26(8):e12547. PubMed ID: 30946511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic-Based Oxygen (O
    Azimzadeh M; Khashayar P; Amereh M; Tasnim N; Hoorfar M; Akbari M
    Biosensors (Basel); 2021 Dec; 12(1):. PubMed ID: 35049634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward embedded laboratory automation for smart Lab-on-a-Chip embryo arrays.
    Wang KI; Salcic Z; Yeh J; Akagi J; Zhu F; Hall CJ; Crosier KE; Crosier PS; Wlodkowic D
    Biosens Bioelectron; 2013 Oct; 48():188-96. PubMed ID: 23685315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.