These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 27272952)
1. Biosynthesis of isoxazolin-5-one and 3-nitropropanoic acid containing glucosides in juvenile Chrysomelina. Becker T; Ploss K; Boland W Org Biomol Chem; 2016 Jul; 14(26):6274-80. PubMed ID: 27272952 [TBL] [Abstract][Full Text] [Related]
2. A tale of four kingdoms - isoxazolin-5-one- and 3-nitropropanoic acid-derived natural products. Becker T; Pasteels J; Weigel C; Dahse HM; Voigt K; Boland W Nat Prod Rep; 2017 Apr; 34(4):343-360. PubMed ID: 28271107 [TBL] [Abstract][Full Text] [Related]
3. Involvement of CYP347W1 in neurotoxin 3-nitropropionic acid-based chemical defense in mustard leaf beetle Phaedon cochleariae. Fu N; Becker T; Brandt W; Kunert M; Burse A; Boland W Insect Sci; 2022 Apr; 29(2):453-466. PubMed ID: 34235855 [TBL] [Abstract][Full Text] [Related]
4. Two Defensive Lines in Juvenile Leaf Beetles; Esters of 3-nitropropionic Acid in the Hemolymph and Aposematic Warning. Pauls G; Becker T; Rahfeld P; Gretscher RR; Paetz C; Pasteels J; von Reuss SH; Burse A; Boland W J Chem Ecol; 2016 Mar; 42(3):240-8. PubMed ID: 27033853 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of isoxazolin-5-one glucosides by a cascade reaction. Becker T; Görls H; Pauls G; Wedekind R; Kai M; von Reuß SH; Boland W J Org Chem; 2013 Dec; 78(24):12779-83. PubMed ID: 24266449 [TBL] [Abstract][Full Text] [Related]
6. Spodoptera littoralis detoxifies neurotoxic 3-nitropropanoic acid by conjugation with amino acids. Novoselov A; Becker T; Pauls G; von Reuß SH; Boland W Insect Biochem Mol Biol; 2015 Aug; 63():97-103. PubMed ID: 26092560 [TBL] [Abstract][Full Text] [Related]
7. Sequestration of plant-derived phenolglucosides by larvae of the leaf beetle Chrysomela lapponica: thioglucosides as mechanistic probes. Kuhn J; Pettersson EM; Feld BK; Nie L; Tolzin-Banasch K; M'Rabet SM; Pasteels J; Boland W J Chem Ecol; 2007 Jan; 33(1):5-24. PubMed ID: 17080305 [TBL] [Abstract][Full Text] [Related]
8. A versatile transport network for sequestering and excreting plant glycosides in leaf beetles provides an evolutionary flexible defense strategy. Discher S; Burse A; Tolzin-Banasch K; Heinemann SH; Pasteels JM; Boland W Chembiochem; 2009 Sep; 10(13):2223-9. PubMed ID: 19623597 [TBL] [Abstract][Full Text] [Related]
9. Quantification of nitropropanoyl glucosides in karaka nuts before and after treatment. MacAskill JJ; Manley-Harris M; Field RJ Food Chem; 2015 May; 175():543-8. PubMed ID: 25577118 [TBL] [Abstract][Full Text] [Related]
10. Iridoid biosynthesis in Chrysomelina larvae: Fat body produces early terpenoid precursors. Burse A; Schmidt A; Frick S; Kuhn J; Gershenzon J; Boland W Insect Biochem Mol Biol; 2007 Mar; 37(3):255-65. PubMed ID: 17296500 [TBL] [Abstract][Full Text] [Related]
11. ABC transporter functions as a pacemaker for sequestration of plant glucosides in leaf beetles. Strauss AS; Peters S; Boland W; Burse A Elife; 2013 Dec; 2():e01096. PubMed ID: 24302568 [TBL] [Abstract][Full Text] [Related]
12. Glucose and glucose esters in the larval secretion of Chrysomela lapponica; selectivity of the glucoside import system from host plant leaves. Tolzin-Banasch K; Dagvadorj E; Sammer U; Kunert M; Kirsch R; Ploss K; Pasteels JM; Boland W J Chem Ecol; 2011 Feb; 37(2):195-204. PubMed ID: 21301937 [TBL] [Abstract][Full Text] [Related]
13. Tissue-specific profiling of membrane proteins in the salicin sequestering juveniles of the herbivorous leaf beetle, Chrysomela populi. Schmidt L; Wielsch N; Wang D; Boland W; Burse A Insect Biochem Mol Biol; 2019 Jun; 109():81-91. PubMed ID: 30922827 [TBL] [Abstract][Full Text] [Related]
14. Biosynthesis of beta-(isoxazolin-5-on-2-yl)alanine, the precursor of the neurotoxic amino acid beta-N-oxalyl-L-alpha,beta-diaminopropionic acid. Ikegami F; Itagaki S; Ishikawa T; Ongena G; Kuo YH; Lambein F; Murakoshi I Chem Pharm Bull (Tokyo); 1991 Dec; 39(12):3376-7. PubMed ID: 1814634 [TBL] [Abstract][Full Text] [Related]
15. Implication of HMGR in homeostasis of sequestered and de novo produced precursors of the iridoid biosynthesis in leaf beetle larvae. Burse A; Frick S; Schmidt A; Buechler R; Kunert M; Gershenzon J; Brandt W; Boland W Insect Biochem Mol Biol; 2008 Jan; 38(1):76-88. PubMed ID: 18070667 [TBL] [Abstract][Full Text] [Related]
16. UV filter compounds in human lenses: the origin of 4-(2-amino-3-hydroxyphenyl)-4-oxobutanoic acid O-beta-D-glucoside. Bova LM; Wood AM; Jamie JF; Truscott RJ Invest Ophthalmol Vis Sci; 1999 Dec; 40(13):3237-44. PubMed ID: 10586948 [TBL] [Abstract][Full Text] [Related]
17. Biosynthesis of isoxazolinone of isoxazolinone amino acids: incorporation studies on the synthesis of 2-(2-amino-3-carboxypropyl)-isoxazolin-5-one in Lathyrus odoratus seedings [proceedings]. Callebaut A; Lambein F; Van Parijs R Arch Int Physiol Biochim; 1977 Feb; 85(1):157-8. PubMed ID: 68722 [No Abstract] [Full Text] [Related]
18. Always being well prepared for defense: the production of deterrents by juvenile Chrysomelina beetles (Chrysomelidae). Burse A; Frick S; Discher S; Tolzin-Banasch K; Kirsch R; Strauss A; Kunert M; Boland W Phytochemistry; 2009; 70(15-16):1899-909. PubMed ID: 19733867 [TBL] [Abstract][Full Text] [Related]
19. Independently recruited oxidases from the glucose-methanol-choline oxidoreductase family enabled chemical defences in leaf beetle larvae (subtribe Chrysomelina) to evolve. Rahfeld P; Kirsch R; Kugel S; Wielsch N; Stock M; Groth M; Boland W; Burse A Proc Biol Sci; 2014 Aug; 281(1788):20140842. PubMed ID: 24943369 [TBL] [Abstract][Full Text] [Related]
20. Precise RNAi-mediated silencing of metabolically active proteins in the defence secretions of juvenile leaf beetles. Bodemann RR; Rahfeld P; Stock M; Kunert M; Wielsch N; Groth M; Frick S; Boland W; Burse A Proc Biol Sci; 2012 Oct; 279(1745):4126-34. PubMed ID: 22874750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]