These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27273252)

  • 1. The rise of organic electrode materials for energy storage.
    Schon TB; McAllister BT; Li PF; Seferos DS
    Chem Soc Rev; 2016 Nov; 45(22):6345-6404. PubMed ID: 27273252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An overview of carbon materials for flexible electrochemical capacitors.
    He Y; Chen W; Gao C; Zhou J; Li X; Xie E
    Nanoscale; 2013 Oct; 5(19):8799-820. PubMed ID: 23934430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic Supercapacitors as the Next Generation Energy Storage Device: Emergence, Opportunity, and Challenges.
    Biswas S; Chowdhury A
    Chemphyschem; 2023 Feb; 24(3):e202200567. PubMed ID: 36215082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion.
    Yang S; Bachman RE; Feng X; Müllen K
    Acc Chem Res; 2013 Jan; 46(1):116-28. PubMed ID: 23110511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
    Liu L; Niu Z; Chen J
    Chem Soc Rev; 2016 Jul; 45(15):4340-63. PubMed ID: 27263796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural design of graphene for use in electrochemical energy storage devices.
    Chen K; Song S; Liu F; Xue D
    Chem Soc Rev; 2015 Oct; 44(17):6230-57. PubMed ID: 26051987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards establishing standard performance metrics for batteries, supercapacitors and beyond.
    Noori A; El-Kady MF; Rahmanifar MS; Kaner RB; Mousavi MF
    Chem Soc Rev; 2019 Mar; 48(5):1272-1341. PubMed ID: 30741286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing Energy Storage Devices with Biomacromolecules in Hybrid Electrodes.
    Ajjan FN; Mecerreyes D; Inganäs O
    Biotechnol J; 2019 Dec; 14(12):e1900062. PubMed ID: 31692236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the configuration of supercapacitors for maximizing electrochemical performance.
    Zhang J; Zhao XS
    ChemSusChem; 2012 May; 5(5):818-41. PubMed ID: 22550045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical supercapacitors from conducting polyaniline-graphene platforms.
    Ashok Kumar N; Baek JB
    Chem Commun (Camb); 2014 Jun; 50(48):6298-308. PubMed ID: 24797734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Organic Electrode Materials for Ultrafast Electrochemical Energy Storage.
    Zhao-Karger Z; Gao P; Ebert T; Klyatskaya S; Chen Z; Ruben M; Fichtner M
    Adv Mater; 2019 Jun; 31(26):e1806599. PubMed ID: 30786067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured Mo-based electrode materials for electrochemical energy storage.
    Hu X; Zhang W; Liu X; Mei Y; Huang Y
    Chem Soc Rev; 2015 Apr; 44(8):2376-404. PubMed ID: 25688809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage.
    Song Z; Qian Y; Gordin ML; Tang D; Xu T; Otani M; Zhan H; Zhou H; Wang D
    Angew Chem Int Ed Engl; 2015 Nov; 54(47):13947-51. PubMed ID: 26411505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites.
    Chen Z; Augustyn V; Jia X; Xiao Q; Dunn B; Lu Y
    ACS Nano; 2012 May; 6(5):4319-27. PubMed ID: 22471878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles.
    Aboutalebi SH; Jalili R; Esrafilzadeh D; Salari M; Gholamvand Z; Aminorroaya Yamini S; Konstantinov K; Shepherd RL; Chen J; Moulton SE; Innis PC; Minett AI; Razal JM; Wallace GG
    ACS Nano; 2014 Mar; 8(3):2456-66. PubMed ID: 24517282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in nanostructured Nb-based oxides for electrochemical energy storage.
    Yan L; Rui X; Chen G; Xu W; Zou G; Luo H
    Nanoscale; 2016 Apr; 8(16):8443-65. PubMed ID: 27074412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.