BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 27273321)

  • 1. Few genetic and environmental correlations between life history and stress resistance traits affect adaptation to fluctuating thermal regimes.
    Manenti T; Sørensen JG; Moghadam NN; Loeschcke V
    Heredity (Edinb); 2016 Sep; 117(3):149-54. PubMed ID: 27273321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictability rather than amplitude of temperature fluctuations determines stress resistance in a natural population of Drosophila simulans.
    Manenti T; Sørensen JG; Moghadam NN; Loeschcke V
    J Evol Biol; 2014 Oct; 27(10):2113-22. PubMed ID: 25146297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypic plasticity is not affected by experimental evolution in constant, predictable or unpredictable fluctuating thermal environments.
    Manenti T; Loeschcke V; Moghadam NN; Sørensen JG
    J Evol Biol; 2015 Nov; 28(11):2078-87. PubMed ID: 26299271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trait associations across evolutionary time within a drosophila phylogeny: correlated selection or genetic constraint?
    Kellermann V; Overgaard J; Loeschcke V; Kristensen TN; Hoffmann AA
    PLoS One; 2013; 8(8):e72072. PubMed ID: 24015206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal adaptation in Drosophila serrata under conditions linked to its southern border: unexpected patterns from laboratory selection suggest limited evolutionary potential.
    Magiafoglou A; Hoffmann A
    J Genet; 2003 Dec; 82(3):179-89. PubMed ID: 15133194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive up-regulation of Turandot genes rather than changes in acclimation ability is associated with the evolutionary adaptation to temperature fluctuations in Drosophila simulans.
    Manenti T; Loeschcke V; Sørensen JG
    J Insect Physiol; 2018 Jan; 104():40-47. PubMed ID: 29175088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Daily increasing or decreasing photoperiod affects stress resistance and life history traits in four Drosophila species.
    Manenti T; Sten LJ; Loeschcke V
    J Insect Physiol; 2021 Jul; 132():104251. PubMed ID: 33971199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resistance to environmental stress in Drosophila ananassae: latitudinal variation and adaptation among populations.
    Sisodia S; Singh BN
    J Evol Biol; 2010 Sep; 23(9):1979-88. PubMed ID: 20695963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of thermal stress on evolutionary trajectories of pathogen resistance in three-spined stickleback (Gasterosteus aculeatus).
    Schade FM; Shama LN; Wegner KM
    BMC Evol Biol; 2014 Jul; 14():164. PubMed ID: 25927537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pronounced Plastic and Evolutionary Responses to Unpredictable Thermal Fluctuations in
    Sørensen JG; Manenti T; Bechsgaard JS; Schou MF; Kristensen TN; Loeschcke V
    Front Genet; 2020; 11():555843. PubMed ID: 33193631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster.
    Bubliy OA; Loeschcke V
    J Evol Biol; 2005 Jul; 18(4):789-803. PubMed ID: 16033550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desiccation and starvation resistance in Drosophila: patterns of variation at the species, population and intrapopulation levels.
    Hoffmann AA; Harshman LG
    Heredity (Edinb); 1999 Dec; 83 ( Pt 6)():637-43. PubMed ID: 10651907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Sleep Is an Evolutionarily Adaptive Response to Starvation Stress in Drosophila.
    Slocumb ME; Regalado JM; Yoshizawa M; Neely GG; Masek P; Gibbs AG; Keene AC
    PLoS One; 2015; 10(7):e0131275. PubMed ID: 26147198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal evolution of pre-adult life history traits, geometric size and shape, and developmental stability in Drosophila subobscura.
    Santos M; Brites D; Laayouni H
    J Evol Biol; 2006 Nov; 19(6):2006-21. PubMed ID: 17040398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increases in the evolutionary potential of upper thermal limits under warmer temperatures in two rainforest Drosophila species.
    van Heerwaarden B; Malmberg M; Sgrò CM
    Evolution; 2016 Feb; 70(2):456-64. PubMed ID: 26703976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictable phenotypic, but not karyotypic, evolution of populations with contrasting initial history.
    Simões P; Fragata I; Seabra SG; Faria GS; Santos MA; Rose MR; Santos M; Matos M
    Sci Rep; 2017 Apr; 7(1):913. PubMed ID: 28424494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental evolution with Drosophila.
    Burke MK; Rose MR
    Am J Physiol Regul Integr Comp Physiol; 2009 Jun; 296(6):R1847-54. PubMed ID: 19339679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genetic covariance among clinal environments after adaptation to an environmental gradient in Drosophila serrata.
    Sgrò CM; Blows MW
    Genetics; 2004 Jul; 167(3):1281-91. PubMed ID: 15280242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity and evolution in correlated suites of traits.
    Fischer EK; Ghalambor CK; Hoke KL
    J Evol Biol; 2016 May; 29(5):991-1002. PubMed ID: 26849747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity and cross-tolerance to heterogeneous environments: divergent stress responses co-evolved in an African fruit fly.
    Gotcha N; Terblanche JS; Nyamukondiwa C
    J Evol Biol; 2018 Jan; 31(1):98-110. PubMed ID: 29080375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.