These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 27273456)

  • 21. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction.
    Sharma PK; De Visser SP; Ogliaro F; Shaik S
    J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ligand topology effect on the reactivity of a mononuclear nonheme iron(IV)-oxo complex in oxygenation reactions.
    Hong S; Lee YM; Cho KB; Sundaravel K; Cho J; Kim MJ; Shin W; Nam W
    J Am Chem Soc; 2011 Aug; 133(31):11876-9. PubMed ID: 21736350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Mononuclear Nonheme Iron(IV)-Oxo Complex of a Substituted N4Py Ligand: Effect of Ligand Field on Oxygen Atom Transfer and C-H Bond Cleavage Reactivity.
    Singh R; Ganguly G; Malinkin SO; Demeshko S; Meyer F; Nordlander E; Paine TK
    Inorg Chem; 2019 Feb; 58(3):1862-1876. PubMed ID: 30644733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lewis Acid Coupled Electron Transfer of Metal-Oxygen Intermediates.
    Fukuzumi S; Ohkubo K; Lee YM; Nam W
    Chemistry; 2015 Dec; 21(49):17548-59. PubMed ID: 26404482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of cobalt-oxygen intermediates by dioxygen activation at a mononuclear nonheme cobalt(ii) center.
    Malik DD; Chandra A; Seo MS; Lee YM; Farquhar ER; Mebs S; Dau H; Ray K; Nam W
    Dalton Trans; 2021 Sep; 50(34):11889-11898. PubMed ID: 34373886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidative dehalogenation of halophenols by high-valent nonheme iron(IV)-oxo intermediates.
    Bagha UK; Satpathy JK; Mukherjee G; Barman P; Kumar D; de Visser SP; Sastri CV
    Faraday Discuss; 2022 May; 234(0):58-69. PubMed ID: 35170590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced Electron Transfer Reactivity of a Nonheme Iron(IV)-Imido Complex as Compared to the Iron(IV)-Oxo Analogue.
    Vardhaman AK; Lee YM; Jung J; Ohkubo K; Nam W; Fukuzumi S
    Angew Chem Int Ed Engl; 2016 Mar; 55(11):3709-13. PubMed ID: 26890463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regioselectivity of aliphatic versus aromatic hydroxylation by a nonheme iron(II)-superoxo complex.
    Latifi R; Tahsini L; Nam W; de Visser SP
    Phys Chem Chem Phys; 2012 Feb; 14(7):2518-24. PubMed ID: 22252092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-valent iron(IV)-oxo complexes of heme and non-heme ligands in oxygenation reactions.
    Nam W
    Acc Chem Res; 2007 Jul; 40(7):522-31. PubMed ID: 17469792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Propene activation by the oxo-iron active species of taurine/alpha-ketoglutarate dioxygenase (TauD) enzyme. How does the catalysis compare to heme-enzymes?
    de Visser SP
    J Am Chem Soc; 2006 Aug; 128(30):9813-24. PubMed ID: 16866538
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A high-spin iron(IV)-oxo complex supported by a trigonal nonheme pyrrolide platform.
    Bigi JP; Harman WH; Lassalle-Kaiser B; Robles DM; Stich TA; Yano J; Britt RD; Chang CJ
    J Am Chem Soc; 2012 Jan; 134(3):1536-42. PubMed ID: 22214221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water as an oxygen source in the generation of mononuclear nonheme iron(IV) oxo complexes.
    Lee YM; Dhuri SN; Sawant SC; Cho J; Kubo M; Ogura T; Fukuzumi S; Nam W
    Angew Chem Int Ed Engl; 2009; 48(10):1803-6. PubMed ID: 19142924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mononuclear nonheme iron(IV)-oxo and manganese(IV)-oxo complexes in oxidation reactions: experimental results prove theoretical prediction.
    Chen J; Cho KB; Lee YM; Kwon YH; Nam W
    Chem Commun (Camb); 2015 Aug; 51(66):13094-7. PubMed ID: 26186554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does hydrogen-bonding donation to manganese(IV)-oxo and iron(IV)-oxo oxidants affect the oxygen-atom transfer ability? A computational study.
    Latifi R; Sainna MA; Rybak-Akimova EV; de Visser SP
    Chemistry; 2013 Mar; 19(12):4058-68. PubMed ID: 23362213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-range electron transfer triggers mechanistic differences between iron(IV)-oxo and iron(IV)-imido oxidants.
    Kumar S; Faponle AS; Barman P; Vardhaman AK; Sastri CV; Kumar D; de Visser SP
    J Am Chem Soc; 2014 Dec; 136(49):17102-15. PubMed ID: 25392052
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height.
    de Visser SP
    J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691
    [TBL] [Abstract][Full Text] [Related]  

  • 37. To rebound or dissociate? This is the mechanistic question in C-H hydroxylation by heme and nonheme metal-oxo complexes.
    Cho KB; Hirao H; Shaik S; Nam W
    Chem Soc Rev; 2016 Mar; 45(5):1197-210. PubMed ID: 26690848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical Identification of the Factors Governing the Reactivity of C-H Bond Activation by Non-Heme Iron(IV)-Oxo Complexes.
    Roy L
    Chempluschem; 2019 Jul; 84(7):893-906. PubMed ID: 31943994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanistic insights into the C-H bond activation of hydrocarbons by chromium(IV) oxo and chromium(III) superoxo complexes.
    Cho KB; Kang H; Woo J; Park YJ; Seo MS; Cho J; Nam W
    Inorg Chem; 2014 Jan; 53(1):645-52. PubMed ID: 24299279
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New Frontiers in Nonheme Enzymatic Oxyferryl Species.
    Paris JC; Hei Cheung Y; Zhang T; Chang WC; Liu P; Guo Y
    Chembiochem; 2024 Jun; ():e202400307. PubMed ID: 38900645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.