BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27273466)

  • 1. A Green Approach to High-Performance Supercapacitor Electrodes: The Chemical Activation of Hydrochar with Potassium Bicarbonate.
    Sevilla M; Fuertes AB
    ChemSusChem; 2016 Jul; 9(14):1880-8. PubMed ID: 27273466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KOH activation of wax gourd-derived carbon materials with high porosity and heteroatom content for aqueous or all-solid-state supercapacitors.
    Yu D; Ma Y; Chen M; Dong X
    J Colloid Interface Sci; 2019 Mar; 537():569-578. PubMed ID: 30471611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Multiwalled Carbon Nanotubes as Additives in Biomass-Derived Carbons for Supercapacitor Applications.
    Rey-Raap N; Enterría M; Martins JI; Pereira MFR; Figueiredo JL
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6066-6077. PubMed ID: 30652469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes.
    Elmouwahidi A; Zapata-Benabithe Z; Carrasco-Marín F; Moreno-Castilla C
    Bioresour Technol; 2012 May; 111():185-90. PubMed ID: 22370231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications.
    Zhang W; Xu J; Hou D; Yin J; Liu D; He Y; Lin H
    J Colloid Interface Sci; 2018 Nov; 530():338-344. PubMed ID: 29982026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior capacitive performance of hydrochar-based porous carbons in aqueous electrolytes.
    Fuertes AB; Sevilla M
    ChemSusChem; 2015 Mar; 8(6):1049-57. PubMed ID: 25677575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3-D hierarchical porous carbon from oxidized lignin by one-step activation for high-performance supercapacitor.
    Wan X; Shen F; Hu J; Huang M; Zhao L; Zeng Y; Tian D; Yang G; Zhang Y
    Int J Biol Macromol; 2021 Jun; 180():51-60. PubMed ID: 33727185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Humic acids-based hierarchical porous carbons as high-rate performance electrodes for symmetric supercapacitors.
    Qiao ZJ; Chen MM; Wang CY; Yuan YC
    Bioresour Technol; 2014 Jul; 163():386-9. PubMed ID: 24851713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchically porous and heteroatom self-doped graphitic biomass carbon for supercapacitors.
    Hou L; Hu Z; Wang X; Qiang L; Zhou Y; Lv L; Li S
    J Colloid Interface Sci; 2019 Mar; 540():88-96. PubMed ID: 30634062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional hierarchical porous carbon derived from lignin for supercapacitors: Insight into the hydrothermal carbonization and activation.
    Li H; Shi F; An Q; Zhai S; Wang K; Tong Y
    Int J Biol Macromol; 2021 Jan; 166():923-933. PubMed ID: 33152364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance.
    Song M; Zhou Y; Ren X; Wan J; Du Y; Wu G; Ma F
    J Colloid Interface Sci; 2019 Feb; 535():276-286. PubMed ID: 30316114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes.
    Qu WH; Xu YY; Lu AH; Zhang XQ; Li WC
    Bioresour Technol; 2015 Aug; 189():285-291. PubMed ID: 25898091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3 D Hierarchical Porous Carbon for Supercapacitors Prepared from Lignin through a Facile Template-Free Method.
    Zhang W; Lin H; Lin Z; Yin J; Lu H; Liu D; Zhao M
    ChemSusChem; 2015 Jun; 8(12):2114-22. PubMed ID: 26033894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capacitance of KOH activated carbide-derived carbons.
    Portet C; Lillo-Ródenas MA; Linares-Solano A; Gogotsi Y
    Phys Chem Chem Phys; 2009 Jul; 11(25):4943-5. PubMed ID: 19562122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor.
    Ma G; Yang Q; Sun K; Peng H; Ran F; Zhao X; Lei Z
    Bioresour Technol; 2015 Dec; 197():137-42. PubMed ID: 26320018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal carbons from hemicellulose-derived aqueous hydrolysis products as electrode materials for supercapacitors.
    Falco C; Sieben JM; Brun N; Sevilla M; van der Mauelen T; Morallón E; Cazorla-Amorós D; Titirici MM
    ChemSusChem; 2013 Feb; 6(2):374-82. PubMed ID: 23319452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot synthesis of unique skin-tissue-bone structured porous carbons for enhanced supercapacitor performance.
    Yan D; Guo DC; Lu AH; Dong XL; Li WC
    J Colloid Interface Sci; 2019 Dec; 557():519-527. PubMed ID: 31546117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob.
    Tseng RL; Tseng SK
    J Colloid Interface Sci; 2005 Jul; 287(2):428-37. PubMed ID: 15925607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly microporous carbon with nitrogen-doping derived from natural biowaste for high-performance flexible solid-state supercapacitor.
    Liu F; Gao Y; Zhang C; Huang H; Yan C; Chu X; Xu Z; Wang Z; Zhang H; Xiao X; Yang W
    J Colloid Interface Sci; 2019 Jul; 548():322-332. PubMed ID: 31028996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of high-energy-density supercapacitors from pine-cone-derived high-surface-area carbons.
    Karthikeyan K; Amaresh S; Lee SN; Sun X; Aravindan V; Lee YG; Lee YS
    ChemSusChem; 2014 May; 7(5):1435-42. PubMed ID: 24648276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.