BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27273476)

  • 1. Structural flexibility of the periplasmic protein, FlgA, regulates flagellar P-ring assembly in Salmonella enterica.
    Matsunami H; Yoon YH; Meshcheryakov VA; Namba K; Samatey FA
    Sci Rep; 2016 Jun; 6():27399. PubMed ID: 27273476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Salmonella FlgA protein, a putativeve periplasmic chaperone essential for flagellar P ring formation.
    Nambu T; Kutsukake K
    Microbiology (Reading); 2000 May; 146 ( Pt 5)():1171-1178. PubMed ID: 10832645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization and preliminary X-ray analysis of FlgA, a periplasmic protein essential for flagellar P-ring assembly.
    Matsunami H; Samatey FA; Nagashima S; Imada K; Namba K
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Mar; 68(Pt 3):310-3. PubMed ID: 22442230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Salmonella enterica ZinT structure, zinc affinity and interaction with the high-affinity uptake protein ZnuA provide insight into the management of periplasmic zinc.
    Ilari A; Alaleona F; Tria G; Petrarca P; Battistoni A; Zamparelli C; Verzili D; Falconi M; Chiancone E
    Biochim Biophys Acta; 2014 Jan; 1840(1):535-44. PubMed ID: 24128931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence analysis of the flgA gene and its adjacent region in Salmonella typhimurium, and identification of another flagellar gene, flgN.
    Kutsukake K; Okada T; Yokoseki T; Iino T
    Gene; 1994 May; 143(1):49-54. PubMed ID: 8200538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the intramolecular disulfide bond in FlgI, the flagellar P-ring component of Escherichia coli.
    Hizukuri Y; Yakushi T; Kawagishi I; Homma M
    J Bacteriol; 2006 Jun; 188(12):4190-7. PubMed ID: 16740925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architecture and Assembly of Periplasmic Flagellum.
    Chang Y; Liu J
    Microbiol Spectr; 2019 Jul; 7(4):. PubMed ID: 31373267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Periplasmic Complex of the Nitrite Reductase NirS, the Chaperone DnaK, and the Flagellum Protein FliC Is Essential for Flagellum Assembly and Motility in Pseudomonas aeruginosa.
    Borrero-de Acuña JM; Molinari G; Rohde M; Dammeyer T; Wissing J; Jänsch L; Arias S; Jahn M; Schobert M; Timmis KN; Jahn D
    J Bacteriol; 2015 Oct; 197(19):3066-75. PubMed ID: 26170416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the periplasmic copper-binding protein CueP from Salmonella enterica serovar Typhimurium.
    Yoon BY; Kim YH; Kim N; Yun BY; Kim JS; Lee JH; Cho HS; Lee K; Ha NC
    Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):1867-75. PubMed ID: 24100307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posttranscriptional control of the Salmonella enterica flagellar hook protein FlgE.
    Lee HJ; Hughes KT
    J Bacteriol; 2006 May; 188(9):3308-16. PubMed ID: 16621824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB.
    Kojima S; Imada K; Sakuma M; Sudo Y; Kojima C; Minamino T; Homma M; Namba K
    Mol Microbiol; 2009 Aug; 73(4):710-8. PubMed ID: 19627504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BamA β16C strand and periplasmic turns are critical for outer membrane protein insertion and assembly.
    Gu Y; Zeng Y; Wang Z; Dong C
    Biochem J; 2017 Nov; 474(23):3951-3961. PubMed ID: 28974626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the periplasmic disulfide-bond isomerase DsbC from Salmonella enterica serovar Typhimurium and the mechanistic implications.
    Jiao L; Kim JS; Song WS; Yoon BY; Lee K; Ha NC
    J Struct Biol; 2013 Jul; 183(1):1-10. PubMed ID: 23726983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure analysis of the periplasmic region of bacterial flagellar motor stators by small angle X-ray scattering.
    Liew CW; Hynson RM; Ganuelas LA; Shah-Mohammadi N; Duff AP; Kojima S; Homma M; Lee LK
    Biochem Biophys Res Commun; 2018 Jan; 495(2):1614-1619. PubMed ID: 29197577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helicobacter pylori FlhB function: the FlhB C-terminal homologue HP1575 acts as a "spare part" to permit flagellar export when the HP0770 FlhBCC domain is deleted.
    Wand ME; Sockett RE; Evans KJ; Doherty N; Sharp PM; Hardie KR; Winzer K
    J Bacteriol; 2006 Nov; 188(21):7531-41. PubMed ID: 17050924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Oligomerizing Structure of the Flagellar Cap Protein FliD and Its Implication in Filament Assembly.
    Song WS; Cho SY; Hong HJ; Park SC; Yoon SI
    J Mol Biol; 2017 Mar; 429(6):847-857. PubMed ID: 28179186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel self-capping mechanism controls aggregation of periplasmic chaperone Caf1M.
    Zavialov AV; Knight SD
    Mol Microbiol; 2007 Apr; 64(1):153-64. PubMed ID: 17376079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor.
    Morimoto YV; Nakamura S; Kami-ike N; Namba K; Minamino T
    Mol Microbiol; 2010 Dec; 78(5):1117-29. PubMed ID: 21091499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure of DcrB, a lipoprotein from Salmonella enterica, reveals flexibility in the N-terminal segment of the Mog1p/PsbP-like fold.
    Rasmussen DM; Soens RW; Davie TJ; Vaneerd CK; Bhattacharyya B; May JF
    J Struct Biol; 2018 Dec; 204(3):513-518. PubMed ID: 30339832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bdm-Mediated Regulation of Flagellar Biogenesis in Escherichia coli and Salmonella enterica Serovar Typhimurium.
    Lee J; Kim DJ; Yeom JH; Lee K
    Curr Microbiol; 2017 Sep; 74(9):1015-1020. PubMed ID: 28603807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.