BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 27273533)

  • 1. The chloroplast genome of Phacus orbicularis (Euglenophyceae): an initial datum point for the phacaceae.
    Kasiborski BA; Bennett MS; Linton EW
    J Phycol; 2016 Jun; 52(3):404-11. PubMed ID: 27273533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrageneric Variability Between the Chloroplast Genomes of Trachelomonas grandis and Trachelomonas volvocina and Phylogenomic Analysis of Phototrophic Euglenoids.
    Dabbagh N; Preisfeld A
    J Eukaryot Microbiol; 2018 Jul; 65(5):648-660. PubMed ID: 29418041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the chloroplast genome in photosynthetic euglenoids: a comparison of Eutreptia viridis and Euglena gracilis (Euglenophyta).
    Wiegert KE; Bennett MS; Triemer RE
    Protist; 2012 Nov; 163(6):832-43. PubMed ID: 22364772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloroplast Genome Evolution in the Euglenaceae.
    Bennett MS; Triemer RE
    J Eukaryot Microbiol; 2015; 62(6):773-85. PubMed ID: 25976746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroplast genome expansion by intron multiplication in the basal psychrophilic euglenoid
    Dabbagh N; Bennett MS; Triemer RE; Preisfeld A
    PeerJ; 2017; 5():e3725. PubMed ID: 28852596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracing patterns of chloroplast evolution in euglenoids: contributions from Colacium vesiculosum and Strombomonas acuminata (Euglenophyta).
    Wiegert KE; Bennett MS; Triemer RE
    J Eukaryot Microbiol; 2013; 60(2):214-21. PubMed ID: 23351081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Phylogeny and Cryptic Diversity of the Genus Phacus (Phacaceae, Euglenophyceae) and the Descriptions of Seven New Species.
    Kim JI; Shin W
    J Phycol; 2014 Oct; 50(5):948-59. PubMed ID: 26988648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary Origin of Euglena.
    Zakryś B; Milanowski R; Karnkowska A
    Adv Exp Med Biol; 2017; 979():3-17. PubMed ID: 28429314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure.
    Marin B; Palm A; Klingberg M; Melkonian M
    Protist; 2003 Apr; 154(1):99-145. PubMed ID: 12812373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic evolution of inverted repeats in Euglenophyta plastid genomes.
    Karnkowska A; Bennett MS; Triemer RE
    Sci Rep; 2018 Oct; 8(1):16071. PubMed ID: 30375469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenetic Relationships and Morphological Character Evolution of Photosynthetic Euglenids (Excavata) Inferred from Taxon-rich Analyses of Five Genes.
    Karnkowska A; Bennett MS; Watza D; Kim JI; Zakryś B; Triemer RE
    J Eukaryot Microbiol; 2015; 62(3):362-73. PubMed ID: 25377266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Chloroplast Genome of Euglena mutabilis-Cluster Arrangement, Intron Analysis, and Intrageneric Trends.
    Dabbagh N; Preisfeld A
    J Eukaryot Microbiol; 2017 Jan; 64(1):31-44. PubMed ID: 27254767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted enrichment of novel chloroplast-based probes reveals a large-scale phylogeny of 412 bamboos.
    Wang J; Mu W; Yang T; Song Y; Hou YG; Wang Y; Gao Z; Liu X; Liu H; Zhao H
    BMC Plant Biol; 2021 Feb; 21(1):76. PubMed ID: 33546593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing euglenoid evolutionary relationships using three genes: nuclear SSU and LSU, and chloroplast SSU rDNA sequences and the description of Euglenaria gen. nov. (Euglenophyta).
    Linton EW; Karnkowska-Ishikawa A; Kim JI; Shin W; Bennett MS; Kwiatowski J; Zakryś B; Triemer RE
    Protist; 2010 Oct; 161(4):603-19. PubMed ID: 20434949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maturyoshka: A maturase inside a maturase, and other peculiarities of the novel chloroplast genomes of marine euglenophytes.
    Maciszewski K; Dabbagh N; Preisfeld A; Karnkowska A
    Mol Phylogenet Evol; 2022 May; 170():107441. PubMed ID: 35189368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyses of environmental sequences and two regions of chloroplast genomes revealed the presence of new clades of photosynthetic euglenids in marine environments.
    Lukešová S; Karlicki M; Tomečková Hadariová L; Szabová J; Karnkowska A; Hampl V
    Environ Microbiol Rep; 2020 Feb; 12(1):78-91. PubMed ID: 31845515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic analysis of phagotrophic, photomorphic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence.
    Müllner AN; Angeler DG; Samuel R; Linton EW; Triemer RE
    Int J Syst Evol Microbiol; 2001 May; 51(Pt 3):783-791. PubMed ID: 11411698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids.
    Turmel M; Gagnon MC; O'Kelly CJ; Otis C; Lemieux C
    Mol Biol Evol; 2009 Mar; 26(3):631-48. PubMed ID: 19074760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chloroplast genome of the diatom Seminavis robusta: new features introduced through multiple mechanisms of horizontal gene transfer.
    Brembu T; Winge P; Tooming-Klunderud A; Nederbragt AJ; Jakobsen KS; Bones AM
    Mar Genomics; 2014 Aug; 16():17-27. PubMed ID: 24365712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of paralogous enzymes MAT and MATX within the Euglenida and beyond.
    Szabová J; Yubuki N; Leander BS; Triemer RE; Hampl V
    BMC Evol Biol; 2014 Feb; 14():25. PubMed ID: 24517416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.