BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 27273818)

  • 1. Integration of Artificial Photosynthesis System for Enhanced Electronic Energy-Transfer Efficacy: A Case Study for Solar-Energy Driven Bioconversion of Carbon Dioxide to Methanol.
    Ji X; Su Z; Wang P; Ma G; Zhang S
    Small; 2016 Sep; 12(34):4753-62. PubMed ID: 27273818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes.
    Ji X; Su Z; Wang P; Ma G; Zhang S
    ACS Nano; 2015; 9(4):4600-10. PubMed ID: 25857747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrochemical Reduction of Carbon Dioxide to Methanol through a Highly Efficient Enzyme Cascade.
    Kuk SK; Singh RK; Nam DH; Singh R; Lee JK; Park CB
    Angew Chem Int Ed Engl; 2017 Mar; 56(14):3827-3832. PubMed ID: 28120367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling photocatalysis and redox biocatalysis toward biocatalyzed artificial photosynthesis.
    Lee SH; Kim JH; Park CB
    Chemistry; 2013 Apr; 19(14):4392-406. PubMed ID: 23436280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial Photoenzymatic Reduction of Carbon Dioxide to Methanol by Using Electron Mediator and Co-factorAssembled ZnIn
    Zhao H; Qi Y; Zhan P; Zhu Q; Liu X; Guan X; Zhang C; Su C; Qin P; Cai D
    ChemSusChem; 2023 Jun; 16(12):e202300061. PubMed ID: 36847586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanobiocatalytic assemblies for artificial photosynthesis.
    Kim JH; Nam DH; Park CB
    Curr Opin Biotechnol; 2014 Aug; 28():1-9. PubMed ID: 24832068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2.
    Yadav RK; Baeg JO; Oh GH; Park NJ; Kong KJ; Kim J; Hwang DW; Biswas SK
    J Am Chem Soc; 2012 Jul; 134(28):11455-61. PubMed ID: 22769600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial leaf device for solar fuel production.
    Amao Y; Shuto N; Furuno K; Obata A; Fuchino Y; Uemura K; Kajino T; Sekito T; Iwai S; Miyamoto Y; Matsuda M
    Faraday Discuss; 2012; 155():289-96; discussion 297-308. PubMed ID: 22470981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired Photocatalytic NADH Regeneration by Covalently Metalated Carbon Nitride for Enhanced CO
    Zhang Y; Liu J
    Chemistry; 2022 Oct; 28(55):e202201430. PubMed ID: 35758216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage.
    Kalyanasundaram K; Graetzel M
    Curr Opin Biotechnol; 2010 Jun; 21(3):298-310. PubMed ID: 20439158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar-Driven CO
    Morikawa T; Sato S; Sekizawa K; Suzuki TM; Arai T
    Acc Chem Res; 2022 Apr; 55(7):933-943. PubMed ID: 34851099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals.
    Liu C; Gallagher JJ; Sakimoto KK; Nichols EM; Chang CJ; Chang MC; Yang P
    Nano Lett; 2015 May; 15(5):3634-9. PubMed ID: 25848808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-driven catalysis with engineered enzymes and biomimetic systems.
    Edwards EH; Bren KL
    Biotechnol Appl Biochem; 2020 Jul; 67(4):463-483. PubMed ID: 32588914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis.
    Wasielewski MR
    J Org Chem; 2006 Jul; 71(14):5051-66. PubMed ID: 16808492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated artificial photosynthesis system based on peptide nanotubes.
    Xue B; Li Y; Yang F; Zhang C; Qin M; Cao Y; Wang W
    Nanoscale; 2014 Jul; 6(14):7832-7. PubMed ID: 24920173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Material-Microbe Interfaces for Solar-Driven CO
    Sahoo PC; Pant D; Kumar M; Puri SK; Ramakumar SSV
    Trends Biotechnol; 2020 Nov; 38(11):1245-1261. PubMed ID: 32305152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of Functionally Compartmental Inorganic Photocatalyst-Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO
    Tian Y; Zhou Y; Zong Y; Li J; Yang N; Zhang M; Guo Z; Song H
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34795-34805. PubMed ID: 32805792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.