These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27274696)

  • 1. Lattice continuum and diffusional creep.
    Mesarovic SD
    Proc Math Phys Eng Sci; 2016 Apr; 472(2188):20160039. PubMed ID: 27274696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shift of Creep Mechanism in Nanocrystalline NiAl Alloy.
    Sun Z; Liu B; He C; Xie L; Peng Q
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31394760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of vacancy creation and annihilation on grain boundary motion.
    McFadden GB; Boettinger WJ; Mishin Y
    Acta Mater; 2020; 185():. PubMed ID: 33281492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Percolation of diffusional creep: a new universality class.
    Chen Y; Schuh CA
    Phys Rev Lett; 2007 Jan; 98(3):035701. PubMed ID: 17358693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Mo Segregation at Grain Boundaries on the High Temperature Creep Behavior of Ni-Mo Alloys: An Atomistic Study.
    Li Q; Zhang J; Tang H; Zhang H; Ye H; Zheng Y
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Evolution and Transitions of Mechanisms in Creep Deformation of Nanocrystalline FeCrAl Alloys.
    Yao H; Ye T; Wang P; Wu J; Zhang J; Chen P
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Dynamics Simulation on Creep Behavior of Nanocrystalline TiAl Alloy.
    Zhao F; Zhang J; He C; Zhang Y; Gao X; Xie L
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32872153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics Simulation of High-Temperature Creep Behavior of Nickel Polycrystalline Nanopillars.
    Xu X; Binkele P; Verestek W; Schmauder S
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33946981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibiting creep in nanograined alloys with stable grain boundary networks.
    Zhang BB; Tang YG; Mei QS; Li XY; Lu K
    Science; 2022 Nov; 378(6620):659-663. PubMed ID: 36356141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The microstructure and creep behavior of cold rolled udimet 188 sheet.
    Boehlert CJ; Longanbach SC
    Microsc Microanal; 2011 Jun; 17(3):350-61. PubMed ID: 21205424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Interactions of Composition and Stress in Crystalline Solids.
    Larché FC; Cahn JW
    J Res Natl Bur Stand (1977); 1984; 89(6):467-500. PubMed ID: 34566139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.
    Darling KA; Rajagopalan M; Komarasamy M; Bhatia MA; Hornbuckle BC; Mishra RS; Solanki KN
    Nature; 2016 Sep; 537(7620):378-81. PubMed ID: 27629642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creep-Fatigue Crack Initiation Simulation of a Modified 12% Cr Steel Based on Grain Boundary Cavitation and Plastic Slip Accumulation.
    Jin X; Wang RZ; Shu Y; Fei JW; Wen JF; Tu ST
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grain Boundary Character Dependence on Nucleation of Discontinuous Precipitates in Cu-Ti Alloys.
    Semboshi S; Sato M; Kaneno Y; Iwase A; Takasugi T
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient annealing of radiation damage near grain boundaries via interstitial emission.
    Bai XM; Voter AF; Hoagland RG; Nastasi M; Uberuaga BP
    Science; 2010 Mar; 327(5973):1631-4. PubMed ID: 20339070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Helium in-plane migration behavior on 〈1 0 0〉 symmetric tilt grain boundaries in tungsten.
    Yang Z; Hammond KD
    J Phys Condens Matter; 2018 Aug; 30(32):325002. PubMed ID: 29968585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superplastic Deformation Mechanisms in Fine-Grained 2050 Al-Cu-Li Alloys.
    Li H; Liu X; Sun Q; Ye L; Zhang X
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32545854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-scale simulation based study of creep behavior of bimodal nanocrystalline face centered cubic metal.
    Meraj M; Pal S
    J Mol Model; 2017 Oct; 23(11):309. PubMed ID: 29018998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavitation-resistant intergranular precipitates enhance creep performance of
    Rakhmonov JU; Bahl S; Shyam A; Dunand DC
    Acta Mater; 2022 Apr; 228():. PubMed ID: 36439291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and Migration Mechanisms of Small Vacancy Clusters in Cu: A Combined EAM and DFT Study.
    Fotopoulos V; Mora-Fonz D; Kleinbichler M; Bodlos R; Kozeschnik E; Romaner L; Shluger AL
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.