These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27274710)

  • 1. Retrospective analysis of pulse oximeter alarm settings in an intensive care unit patient population.
    Lansdowne K; Strauss DG; Scully CG
    BMC Nurs; 2016; 15():36. PubMed ID: 27274710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of pulse oximeter settings on the frequency of alarms and detection of hypoxemia: Theoretical effects of artifact rejection, alarm delay, averaging, median filtering or a lower setting of the alarm limit.
    Rheineck-Leyssius AT; Kalkman CJ
    J Clin Monit Comput; 1998 Apr; 14(3):151-6. PubMed ID: 9676861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing Alarm Fatigue in Two Neonatal Intensive Care Units through a Quality Improvement Collaboration.
    Johnson KR; Hagadorn JI; Sink DW
    Am J Perinatol; 2018 Nov; 35(13):1311-1318. PubMed ID: 29783270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing Alarm Burden in a Level IV Neonatal Intensive Care Unit.
    McCauley KE; Schroeder AA; DeBoth TK; Wiebe AM; Bosley CL; Ballweg DD; Fang JL
    Pediatr Qual Saf; 2021; 6(2):e386. PubMed ID: 38571516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in Default Alarm Settings and Standard In-Service are Insufficient to Improve Alarm Fatigue in an Intensive Care Unit: A Pilot Project.
    Sowan AK; Gomez TM; Tarriela AF; Reed CC; Paper BM
    JMIR Hum Factors; 2016 Jan; 3(1):e1. PubMed ID: 27036170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alarms, oxygen saturations, and SpO2 averaging time in the NICU.
    McClure C; Jang SY; Fairchild K
    J Neonatal Perinatal Med; 2016; 9(4):357-362. PubMed ID: 27834782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the "alarm problem" associated with continuous physiologic monitoring of general care patients.
    McGrath SP; Perreard IM; McGovern KM; Blike GT
    Resusc Plus; 2022 Sep; 11():100295. PubMed ID: 36042845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of two SpO
    Warakomska M; Bachman TE; Wilinska M
    BMC Pediatr; 2019 May; 19(1):142. PubMed ID: 31060536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved Filtering of Pulse Oximeter Monitoring Alarms in the Neonatal ICU: Bedside Significance.
    Stefanescu BM; O'Shea TM; Haury F; Carlo WA; Slaughter JC
    Respir Care; 2016 Jan; 61(1):85-9. PubMed ID: 26508772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing physiologic monitor alarm customization software to reduce alarm rates and improve nurses' experience of alarms in a medical intensive care unit.
    Ruppel H; De Vaux L; Cooper D; Kunz S; Duller B; Funk M
    PLoS One; 2018; 13(10):e0205901. PubMed ID: 30335824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical Trial of an Educational Program to Decrease Monitor Alarms in a Medical Intensive Care Unit.
    Brantley A; Collins-Brown S; Kirkland J; Knapp M; Pressley J; Higgins M; McMurtry JP
    AACN Adv Crit Care; 2016 Jul; 27(3):283-289. PubMed ID: 27959311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing the Frequency of Pulse Oximetry Alarms at a Children's Hospital.
    Berg KJ; Johnson DP; Nyberg G; Claeys C; Ausmus A; Wilkinson E; Clark NA
    Pediatrics; 2023 May; 151(5):. PubMed ID: 37017016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of pulse oximeter lower alarm limit on the incidence of hypoxaemia in the recovery room.
    Rheineck-Leyssius AT; Kalkman CJ
    Br J Anaesth; 1997 Oct; 79(4):460-4. PubMed ID: 9389263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alarm settings for the Marquette 8000 pulse oximeter to prevent hyperoxic and hypoxic episodes.
    Cust AE; Donovan TJ; Colditz PB
    J Paediatr Child Health; 1999 Apr; 35(2):159-62. PubMed ID: 10365353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating Physiological Data Artifacts Detection With Clinical Decision Support Systems: Observational Study.
    Nizami S; McGregor Am C; Green JR
    JMIR Biomed Eng; 2021 May; 6(2):e23495. PubMed ID: 38907382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimisation of clinical workflow and monitor settings safely reduces alarms in the NICU.
    Varisco G; van de Mortel H; Cabrera-Quiros L; Atallah L; Hueske-Kraus D; Long X; Cottaar EJ; Zhan Z; Andriessen P; van Pul C
    Acta Paediatr; 2021 Apr; 110(4):1141-1150. PubMed ID: 33048364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiologic monitoring alarm load on medical/surgical floors of a community hospital.
    Gross B; Dahl D; Nielsen L
    Biomed Instrum Technol; 2011; Suppl():29-36. PubMed ID: 21599479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of motion on the performance of pulse oximeters in volunteers (revised publication).
    Barker SJ; Shah NK
    Anesthesiology; 1997 Jan; 86(1):101-8. PubMed ID: 9009945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research Outcomes of Implementing CEASE: An Innovative, Nurse-Driven, Evidence-Based, Patient-Customized Monitoring Bundle to Decrease Alarm Fatigue in the Intensive Care Unit/Step-down Unit.
    Lewis CL; Oster CA
    Dimens Crit Care Nurs; 2019; 38(3):160-173. PubMed ID: 30946125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alarm safety and oxygen saturation targets in the Vermont Oxford Network iNICQ 2015 collaborative.
    Hagadorn JI; Sink DW; Buus-Frank ME; Edwards EM; Morrow KA; Horbar JD; Ferrelli K; Soll RF
    J Perinatol; 2017 Mar; 37(3):270-276. PubMed ID: 27977012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.