BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 27274874)

  • 41. Actin dynamics in neuronal growth cone revealed with a polarized light microscopy.
    Katoh K; Yoshida F; Ishikaw R
    Adv Exp Med Biol; 2003; 538():347-58; discussion 358-9. PubMed ID: 15098681
    [No Abstract]   [Full Text] [Related]  

  • 42. Nervous system-derived chondroitin sulfate proteoglycans regulate growth cone morphology and inhibit neurite outgrowth: a light, epifluorescence, and electron microscopy study.
    Snow DM; Mullins N; Hynds DL
    Microsc Res Tech; 2001 Sep; 54(5):273-86. PubMed ID: 11514984
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tropomyosins induce neuritogenesis and determine neurite branching patterns in B35 neuroblastoma cells.
    Curthoys NM; Freittag H; Connor A; Desouza M; Brettle M; Poljak A; Hall A; Hardeman E; Schevzov G; Gunning PW; Fath T
    Mol Cell Neurosci; 2014 Jan; 58():11-21. PubMed ID: 24211701
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Topography and nanomechanics of live neuronal growth cones analyzed by atomic force microscopy.
    Xiong Y; Lee AC; Suter DM; Lee GU
    Biophys J; 2009 Jun; 96(12):5060-72. PubMed ID: 19527666
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Drebrin in Neuronal Migration and Axonal Growth.
    Hanamura K
    Adv Exp Med Biol; 2017; 1006():141-155. PubMed ID: 28865019
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Arp2/3 is a negative regulator of growth cone translocation.
    Strasser GA; Rahim NA; VanderWaal KE; Gertler FB; Lanier LM
    Neuron; 2004 Jul; 43(1):81-94. PubMed ID: 15233919
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tropomyosin localization reveals distinct populations of microfilaments in neurites and growth cones.
    Schevzov G; Gunning P; Jeffrey PL; Temm-Grove C; Helfman DM; Lin JJ; Weinberger RP
    Mol Cell Neurosci; 1997; 8(6):439-54. PubMed ID: 9143561
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Substrate Deformation Predicts Neuronal Growth Cone Advance.
    Athamneh AI; Cartagena-Rivera AX; Raman A; Suter DM
    Biophys J; 2015 Oct; 109(7):1358-71. PubMed ID: 26445437
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SCG10, a microtubule destabilizing factor, stimulates the neurite outgrowth by modulating microtubule dynamics in rat hippocampal primary cultured neurons.
    Morii H; Shiraishi-Yamaguchi Y; Mori N
    J Neurobiol; 2006 Sep; 66(10):1101-14. PubMed ID: 16838365
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Different modes of growth cone collapse in NG 108-15 cells.
    Rauch P; Heine P; Goettgens B; Käs JA
    Eur Biophys J; 2013 Aug; 42(8):591-605. PubMed ID: 23644679
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Growth cones isolated from identified Aplysia neurons in vitro: biochemical and morphological characterization.
    Flaster MS; Ambron RT; Schacher S
    Dev Biol; 1986 Dec; 118(2):577-86. PubMed ID: 3792623
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nerve growth factor stimulates coupling of beta1 integrin to distinct transport mechanisms in the filopodia of growth cones.
    Grabham PW; Foley M; Umeojiako A; Goldberg DJ
    J Cell Sci; 2000 Sep; 113 ( Pt 17)():3003-12. PubMed ID: 10934039
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TRPV2 interacts with actin and reorganizes submembranous actin cytoskeleton.
    Yadav M; Goswami C
    Biosci Rep; 2020 Oct; 40(10):. PubMed ID: 32985655
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Focal loss of actin bundles causes microtubule redistribution and growth cone turning.
    Zhou FQ; Waterman-Storer CM; Cohan CS
    J Cell Biol; 2002 May; 157(5):839-49. PubMed ID: 12034775
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Autonomous right-screw rotation of growth cone filopodia drives neurite turning.
    Tamada A; Kawase S; Murakami F; Kamiguchi H
    J Cell Biol; 2010 Feb; 188(3):429-41. PubMed ID: 20123994
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Localized role of CRMP1 and CRMP2 in neurite outgrowth and growth cone steering.
    Higurashi M; Iketani M; Takei K; Yamashita N; Aoki R; Kawahara N; Goshima Y
    Dev Neurobiol; 2012 Dec; 72(12):1528-40. PubMed ID: 22378692
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optogenetic control of PIP3: PIP3 is sufficient to induce the actin-based active part of growth cones and is regulated via endocytosis.
    Kakumoto T; Nakata T
    PLoS One; 2013; 8(8):e70861. PubMed ID: 23951027
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effects of collapsing factors on F-actin content and microtubule distribution of Helisoma growth cones.
    Torreano PJ; Waterman-Storer CM; Cohan CS
    Cell Motil Cytoskeleton; 2005 Mar; 60(3):166-79. PubMed ID: 15700278
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antagonistic forces generated by cytoplasmic dynein and myosin-II during growth cone turning and axonal retraction.
    Myers KA; Tint I; Nadar CV; He Y; Black MM; Baas PW
    Traffic; 2006 Oct; 7(10):1333-51. PubMed ID: 16911591
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction.
    Gallo G
    J Cell Sci; 2006 Aug; 119(Pt 16):3413-23. PubMed ID: 16899819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.