BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 27274909)

  • 1. Optimizing genomic selection for blight resistance in American chestnut backcross populations: A trade-off with American chestnut ancestry implies resistance is polygenic.
    Westbrook JW; Zhang Q; Mandal MK; Jenkins EV; Barth LE; Jenkins JW; Grimwood J; Schmutz J; Holliday JA
    Evol Appl; 2020 Jan; 13(1):31-47. PubMed ID: 31892942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping QTLs for blight resistance and morpho-phenological traits in inter-species hybrid families of chestnut (
    Fan S; Georgi LL; Hebard FV; Zhebentyayeva T; Yu J; Sisco PH; Fitzsimmons SF; Staton ME; Abbott AG; Nelson CD
    Front Plant Sci; 2024; 15():1365951. PubMed ID: 38650705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyto-molecular characterization of rDNA and chromatin composition in the NOR-associated satellite in Chestnut (Castanea spp.).
    Islam-Faridi N; Hodnett GL; Zhebentyayeva T; Georgi LL; Sisco PH; Hebard FV; Nelson CD
    Sci Rep; 2024 Jan; 14(1):980. PubMed ID: 38225361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Disease Triangle of Chestnut: A review of host, pathogen, and environmental interactions of chestnuts cultivated in the eastern United States.
    Miller A; Lewis Ivey ML
    Plant Dis; 2024 Jun; ():. PubMed ID: 38853336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laccase Activity in Fungus
    Nuskern L; Tkalec M; Srezović B; Ježić M; Gačar M; Ćurković-Perica M
    J Fungi (Basel); 2021 Nov; 7(11):. PubMed ID: 34829245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. European and American chestnuts: An overview of the main threats and control efforts.
    Fernandes P; Colavolpe MB; Serrazina S; Costa RL
    Front Plant Sci; 2022; 13():951844. PubMed ID: 36092400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forecasting of Airborne Conidia Quantities and Potential Insect Associations of
    Romon-Ochoa P; Samal P; Pace T; Newman T; Oram M; Baxter N; Manning JAS; Biddle M; Barnard K; Inward D; Taylor P; Hendry S; Pérez-Sierra A; Ward L
    J Fungi (Basel); 2024 Feb; 10(3):. PubMed ID: 38535190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of the three mitogen-activated protein kinase kinases (MAP2Ks) present in the Cryphonectria parasitica genome reveals the necessity of Cpkk1 and Cpkk2, but not Cpkk3, for pathogenesis on chestnut (Castanea spp.).
    Moretti M; Rossi M; Ciuffo M; Turina M
    Mol Plant Pathol; 2014 Jun; 15(5):500-12. PubMed ID: 24373159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgenic American Chestnuts Do Not Inhibit Germination of Native Seeds or Colonization of Mycorrhizal Fungi.
    Newhouse AE; Oakes AD; Pilkey HC; Roden HE; Horton TR; Powell WA
    Front Plant Sci; 2018; 9():1046. PubMed ID: 30073011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tree breeding, a necessary complement to genetic engineering.
    Nelson CD
    New For (Dordr); 2022 Aug; ():1-18. PubMed ID: 35991378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrigendum to 'A new tetra-segmented splipalmivirus with divided RdRP domains from Cryphonectria naterciae, a fungus found on chestnut and cork oak trees in Europe' [Virus Research 291 (2021) 198221].
    Sato Y; Shahi S; Telengech P; Hisano S; Cornejo C; Rigling D; Kondo H; Suzuki N
    Virus Res; 2023 Nov; 337():199228. PubMed ID: 37798193
    [No Abstract]   [Full Text] [Related]  

  • 12. Correction to: Towards understanding Cameraria ohridella (Lepidoptera: Gracillariidae) development: effects of microhabitat variability in naturally growing horse-chestnut tree canopy.
    Łaszczyca P; Nakonieczny M; Kędziorski A; Babczyńska A; Wiesner M
    Int J Biometeorol; 2024 Jun; 68(6):1233. PubMed ID: 38488868
    [No Abstract]   [Full Text] [Related]  

  • 13. Soluble material secreted from
    Florjanczyk A; Barnes R; Kenney A; Horzempa J
    J Plant Pathol Microbiol; 2016 Apr; 7(4):. PubMed ID: 27274909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control.
    Rigling D; Prospero S
    Mol Plant Pathol; 2018 Jan; 19(1):7-20. PubMed ID: 28142223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First Report of Chestnut Blight Caused by Cryphonectria parasitica in a Chestnut Orchard in Andalusia (Southern Spain).
    Bascón J; Castillo S; Borrero C; Orta S; Gata A; Avilés M
    Plant Dis; 2014 Feb; 98(2):283. PubMed ID: 30708770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the transcriptomes of American chestnut (Castanea dentata) and Chinese chestnut (Castanea mollissima) in response to the chestnut blight infection.
    Barakat A; DiLoreto DS; Zhang Y; Smith C; Baier K; Powell WA; Wheeler N; Sederoff R; Carlson JE
    BMC Plant Biol; 2009 May; 9():51. PubMed ID: 19426529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aphelenchoides hylurgi as a carrier of white, hypovirulent Cryphonectria parasitica and its possible role in Hypovirulence spread on blight-controlled american chestnut trees.
    Griffin GJ; Eisenback JD; Yancey MM; Templeton J
    J Nematol; 2009 Dec; 41(4):267-73. PubMed ID: 22736825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological control of chestnut blight with hypovirulence: a critical analysis.
    Milgroom MG; Cortesi P
    Annu Rev Phytopathol; 2004; 42():311-38. PubMed ID: 15283669
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.