BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27275427)

  • 1. Infrared autofluorescence, short-wave autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytomas.
    Zhang P; Hui YN; Xu WQ; Zhang ZF; Wang HY; Sun DJ; Wang YS
    Int J Ophthalmol; 2016; 9(5):713-6. PubMed ID: 27275427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundus autofluorescence in central serous chorioretinopathy: association with spectral-domain optical coherence tomography and fluorescein angiography.
    Zhang P; Wang HY; Zhang ZF; Sun DJ; Zhu JT; Li J; Wang YS
    Int J Ophthalmol; 2015; 8(5):1003-7. PubMed ID: 26558217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autofluorescence and spectral-domain optical coherence tomography of optic disk melanocytoma.
    Guerra RL; Marback EF; Silva IS; Maia Junior Ode O; Marback RL
    Arq Bras Oftalmol; 2014; 77(6):400-2. PubMed ID: 25627191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral-Domain Optical Coherence Tomography Is More Sensitive for Hydroxychloroquine-Related Structural Abnormalities Than Short-Wavelength and Near-Infrared Autofluorescence.
    Jauregui R; Parmann R; Nuzbrokh Y; Tsang SH; Sparrow JR
    Transl Vis Sci Technol; 2020 Aug; 9(9):8. PubMed ID: 32879764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral domain optical coherence tomography and fundus autofluorescence findings in cytomegalovirus retinitis in HIV-infected patients.
    Yashiro S; Nishijima T; Yamamoto Y; Sekine Y; Yoshida-Hata N; Iida T; Oka S
    Jpn J Ophthalmol; 2018 May; 62(3):373-389. PubMed ID: 29445945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multimodal imaging in optic nerve melanocytoma: Optical coherence tomography angiography and other findings.
    Burgos-Blasco B; Ventura-Abreu N; Jimenez-Santos M; Narvaez-Palazon C; Saenz-Francés F; Santos-Bueso E
    J Fr Ophtalmol; 2020 Dec; 43(10):1039-1046. PubMed ID: 32948356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared fundus autofluorescence and central serous chorioretinopathy.
    Sekiryu T; Iida T; Maruko I; Saito K; Kondo T
    Invest Ophthalmol Vis Sci; 2010 Oct; 51(10):4956-62. PubMed ID: 20435599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute central serous chorioretinopathy: a correlation study between fundus autofluorescence and spectral-domain OCT.
    Iacono P; Battaglia PM; Papayannis A; La Spina C; Varano M; Bandello F
    Graefes Arch Clin Exp Ophthalmol; 2015 Nov; 253(11):1889-97. PubMed ID: 25563727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Pathophysiology of macular diseases--morphology and function].
    Iida T
    Nippon Ganka Gakkai Zasshi; 2011 Mar; 115(3):238-74; discussion 275. PubMed ID: 21476310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optic nerve head melanocytoma: Optical coherence tomography/angiography features.
    Raval V; Reddy R; Kaliki S; Das T; Singh AD
    Indian J Ophthalmol; 2021 Feb; 69(2):332-336. PubMed ID: 33463586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical coherence tomography: pathology correlation of optic disc melanocytoma.
    Finger PT; Natesh S; Milman T
    Ophthalmology; 2010 Jan; 117(1):114-9. PubMed ID: 19815289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Granular lesions of short-wavelength and near-infrared autofluorescence in diabetic macular oedema.
    Yoshitake S; Murakami T; Uji A; Fujimoto M; Dodo Y; Suzuma K; Tsujikawa A
    Eye (Lond); 2019 Apr; 33(4):564-571. PubMed ID: 30382240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodal imaging of optic disc melanocytoma.
    Mazzini C; Vicini G; Nicolosi C; Pieretti G; Rizzo S
    Eur J Ophthalmol; 2021 Apr; ():11206721211010616. PubMed ID: 33863247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoreceptor cells as a source of fundus autofluorescence in recessive Stargardt disease.
    Paavo M; Lee W; Allikmets R; Tsang S; Sparrow JR
    J Neurosci Res; 2019 Jan; 97(1):98-106. PubMed ID: 29701254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Case Report: Optic Disc Melanocytoma with PHOMS-Minimum Intensity Projection Image.
    Wang F
    Int Med Case Rep J; 2024; 17():137-141. PubMed ID: 38404753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Choroideremia Carriers: Dark-Adapted Perimetry and Retinal Structures.
    Parmann R; Greenstein VC; Tsang SH; Sparrow JR
    Invest Ophthalmol Vis Sci; 2022 Jul; 63(8):4. PubMed ID: 35816046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of the optic fissure in short-wavelength autofluorescence images of the fundus.
    Duncker T; Greenberg JP; Sparrow JR; Smith RT; Quigley HA; Delori FC
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6682-6. PubMed ID: 22956617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared and short-wavelength autofluorescence in resolved central serous chorioretinopathy: association with outer retinal layer abnormalities.
    Kim SK; Kim SW; Oh J; Huh K
    Am J Ophthalmol; 2013 Jul; 156(1):157-164.e2. PubMed ID: 23601655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared autofluorescence in young choroideremia patients.
    Mucciolo DP; Murro V; Giorgio D; Sodi A; Passerini I; Virgili G; Rizzo S
    Ophthalmic Genet; 2019 Oct; 40(5):421-427. PubMed ID: 31544579
    [No Abstract]   [Full Text] [Related]  

  • 20. Optical coherence tomography angiography findings of an optic disc melanocytoma in a glaucoma eye.
    Kita Y; Hollό G; Murai A; Kita R; Hirakata A
    Int Ophthalmol; 2019 Mar; 39(3):677-682. PubMed ID: 29392641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.