These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27275845)

  • 21. A comprehensive functional portrait of two heat shock factor-type transcriptional regulators involved in Candida albicans morphogenesis and virulence.
    Znaidi S; Nesseir A; Chauvel M; Rossignol T; d'Enfert C
    PLoS Pathog; 2013 Aug; 9(8):e1003519. PubMed ID: 23966855
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Candida albicans Cyr1, Cap1 and G-actin form a sensor/effector apparatus for activating cAMP synthesis in hyphal growth.
    Zou H; Fang HM; Zhu Y; Wang Y
    Mol Microbiol; 2010 Feb; 75(3):579-91. PubMed ID: 19943905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Candida albicans INT1-induced filamentation in Saccharomyces cerevisiae depends on Sla2p.
    Asleson CM; Bensen ES; Gale CA; Melms AS; Kurischko C; Berman J
    Mol Cell Biol; 2001 Feb; 21(4):1272-84. PubMed ID: 11158313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphatidylinositol-dependent phospholipases C Plc2 and Plc3 of Candida albicans are dispensable for morphogenesis and host-pathogen interaction.
    Knechtle P; Goyard S; Brachat S; Ibrahim-Granet O; d'Enfert C
    Res Microbiol; 2005 Aug; 156(7):822-9. PubMed ID: 16040234
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Candida albicans Sfl1 suppresses flocculation and filamentation.
    Bauer J; Wendland J
    Eukaryot Cell; 2007 Oct; 6(10):1736-44. PubMed ID: 17766464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roles of Cch1 and Mid1 in morphogenesis, oxidative stress response and virulence in Candida albicans.
    Yu Q; Wang H; Cheng X; Xu N; Ding X; Xing L; Li M
    Mycopathologia; 2012 Dec; 174(5-6):359-69. PubMed ID: 22886468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Candida albicans Vrp1 is required for polarized morphogenesis and interacts with Wal1 and Myo5.
    Borth N; Walther A; Reijnst P; Jorde S; Schaub Y; Wendland J
    Microbiology (Reading); 2010 Oct; 156(Pt 10):2962-2969. PubMed ID: 20656786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of actin cytoskeletal dynamics in activation of the cyclic AMP pathway and HWP1 gene expression in Candida albicans.
    Wolyniak MJ; Sundstrom P
    Eukaryot Cell; 2007 Oct; 6(10):1824-40. PubMed ID: 17715368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Candida albicans Rho-type GTPase-encoding genes required for polarized cell growth and cell separation.
    Dünkler A; Wendland J
    Eukaryot Cell; 2007 May; 6(5):844-54. PubMed ID: 17351079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An RNA transport system in Candida albicans regulates hyphal morphology and invasive growth.
    Elson SL; Noble SM; Solis NV; Filler SG; Johnson AD
    PLoS Genet; 2009 Sep; 5(9):e1000664. PubMed ID: 19779551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyclin-dependent kinases control septin phosphorylation in Candida albicans hyphal development.
    Sinha I; Wang YM; Philp R; Li CR; Yap WH; Wang Y
    Dev Cell; 2007 Sep; 13(3):421-32. PubMed ID: 17765684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence.
    Kumamoto CA; Vinces MD
    Cell Microbiol; 2005 Nov; 7(11):1546-54. PubMed ID: 16207242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Linking cellular actin status with cAMP signaling in Candida albicans.
    Wang Y; Zou H; Fang HM; Zhu Y
    Virulence; 2010; 1(3):202-5. PubMed ID: 21178443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the RAM network in cell polarity and hyphal morphogenesis in Candida albicans.
    Song Y; Cheon SA; Lee KE; Lee SY; Lee BK; Oh DB; Kang HA; Kim JY
    Mol Biol Cell; 2008 Dec; 19(12):5456-77. PubMed ID: 18843050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Sko1 protein represses the yeast-to-hypha transition and regulates the oxidative stress response in Candida albicans.
    Alonso-Monge R; Román E; Arana DM; Prieto D; Urrialde V; Nombela C; Pla J
    Fungal Genet Biol; 2010 Jul; 47(7):587-601. PubMed ID: 20388546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of sumoylation targets, combined with inactivation of SMT3, reveals the impact of sumoylation upon growth, morphology, and stress resistance in the pathogen Candida albicans.
    Leach MD; Stead DA; Argo E; Brown AJ
    Mol Biol Cell; 2011 Mar; 22(5):687-702. PubMed ID: 21209325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dosage-dependent roles of the Cwt1 transcription factor for cell wall architecture, morphogenesis, drug sensitivity and virulence in Candida albicans.
    Moreno I; Martinez-Esparza M; Laforet LC; Sentandreu R; Ernst JF; Valentin E
    Yeast; 2010 Feb; 27(2):77-87. PubMed ID: 19908200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Candida albicans hyphal morphogenesis occurs in Sec3p-independent and Sec3p-dependent phases separated by septin ring formation.
    Li CR; Lee RT; Wang YM; Zheng XD; Wang Y
    J Cell Sci; 2007 Jun; 120(Pt 11):1898-907. PubMed ID: 17504812
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comprehensive analysis of Candida albicans phosphoproteome reveals dynamic changes in phosphoprotein abundance during hyphal morphogenesis.
    Ghorai P; Irfan M; Narula A; Datta A
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9731-9743. PubMed ID: 30121747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans.
    Chang P; Fan X; Chen J
    Fungal Genet Biol; 2015 Aug; 81():132-41. PubMed ID: 25656079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.