These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 27276169)
1. Ferrocenyl Quinone Methide-Thiol Adducts as New Antiproliferative Agents: Synthesis, Metabolic Formation from Ferrociphenols, and Oxidative Transformation. Wang Y; Richard MA; Top S; Dansette PM; Pigeon P; Vessières A; Mansuy D; Jaouen G Angew Chem Int Ed Engl; 2016 Aug; 55(35):10431-4. PubMed ID: 27276169 [TBL] [Abstract][Full Text] [Related]
2. Oxidative metabolism of ferrocene analogues of tamoxifen: characterization and antiproliferative activities of the metabolites. Richard MA; Hamels D; Pigeon P; Top S; Dansette PM; Lee HZ; Vessières A; Mansuy D; Jaouen G ChemMedChem; 2015 Jun; 10(6):981-90. PubMed ID: 25882581 [TBL] [Abstract][Full Text] [Related]
3. A new generation of ferrociphenols leads to a great diversity of reactive metabolites, and exhibits remarkable antiproliferative properties. Wang Y; Dansette PM; Pigeon P; Top S; McGlinchey MJ; Mansuy D; Jaouen G Chem Sci; 2018 Jan; 9(1):70-78. PubMed ID: 29629075 [TBL] [Abstract][Full Text] [Related]
4. The influence of 4-alkyl substituents on the formation and reactivity of 2-methoxy-quinone methides: evidence that extended pi-conjugation dramatically stabilizes the quinone methide formed from eugenol. Bolton JL; Comeau E; Vukomanovic V Chem Biol Interact; 1995 Apr; 95(3):279-90. PubMed ID: 7728898 [TBL] [Abstract][Full Text] [Related]
5. Diversity-oriented synthesis and bioactivity evaluation of N-substituted ferrocifen compounds as novel antiproliferative agents against TNBC cancer cells. Wang Y; Pigeon P; Li W; Yan J; Dansette PM; Othman M; McGlinchey MJ; Jaouen G Eur J Med Chem; 2022 Apr; 234():114202. PubMed ID: 35279607 [TBL] [Abstract][Full Text] [Related]
6. Immunochemical and proteomic analysis of covalent adducts formed by quinone methide tumor promoters in mouse lung epithelial cell lines. Meier BW; Gomez JD; Zhou A; Thompson JA Chem Res Toxicol; 2005 Oct; 18(10):1575-85. PubMed ID: 16533022 [TBL] [Abstract][Full Text] [Related]
7. Bioactivation of tamoxifen to metabolite E quinone methide: reaction with glutathione and DNA. Fan PW; Bolton JL Drug Metab Dispos; 2001 Jun; 29(6):891-6. PubMed ID: 11353759 [TBL] [Abstract][Full Text] [Related]
8. Influence of quinone methide reactivity on the alkylation of thiol and amino groups in proteins: studies utilizing amino acid and peptide models. Bolton JL; Turnipseed SB; Thompson JA Chem Biol Interact; 1997 Nov; 107(3):185-200. PubMed ID: 9448752 [TBL] [Abstract][Full Text] [Related]
9. Bioactivation of the selective estrogen receptor modulator acolbifene to quinone methides. Liu J; Liu H; van Breemen RB; Thatcher GR; Bolton JL Chem Res Toxicol; 2005 Feb; 18(2):174-82. PubMed ID: 15720121 [TBL] [Abstract][Full Text] [Related]
10. Organometallic Antitumor Compounds: Ferrocifens as Precursors to Quinone Methides. Wang Y; Pigeon P; Top S; McGlinchey MJ; Jaouen G Angew Chem Int Ed Engl; 2015 Aug; 54(35):10230-3. PubMed ID: 26179051 [TBL] [Abstract][Full Text] [Related]
11. Bioactivation of phencyclidine in rat and human liver microsomes and recombinant P450 2B enzymes: evidence for the formation of a novel quinone methide intermediate. Driscoll JP; Kornecki K; Wolkowski JP; Chupak L; Kalgutkar AS; O'Donnell JP Chem Res Toxicol; 2007 Oct; 20(10):1488-97. PubMed ID: 17892269 [TBL] [Abstract][Full Text] [Related]
12. Quenching of quercetin quinone/quinone methides by different thiolate scavengers: stability and reversibility of conjugate formation. Awad HM; Boersma MG; Boeren S; Van Bladeren PJ; Vervoort J; Rietjens IM Chem Res Toxicol; 2003 Jul; 16(7):822-31. PubMed ID: 12870884 [TBL] [Abstract][Full Text] [Related]
13. Evidence for targeting thioredoxin reductases with ferrocenyl quinone methides. A possible molecular basis for the antiproliferative effect of hydroxyferrocifens on cancer cells. Citta A; Folda A; Bindoli A; Pigeon P; Top S; Vessières A; Salmain M; Jaouen G; Rigobello MP J Med Chem; 2014 Nov; 57(21):8849-59. PubMed ID: 25313665 [TBL] [Abstract][Full Text] [Related]
14. Alkylation of 2'-deoxynucleosides and DNA by quinone methides derived from 2,6-di-tert-butyl-4-methylphenol. Lewis MA; Yoerg DG; Bolton JL; Thompson JA Chem Res Toxicol; 1996 Dec; 9(8):1368-74. PubMed ID: 8951242 [TBL] [Abstract][Full Text] [Related]
15. Bioactivation of estrone and its catechol metabolites to quinoid-glutathione conjugates in rat liver microsomes. Iverson SL; Shen L; Anlar N; Bolton JL Chem Res Toxicol; 1996 Mar; 9(2):492-9. PubMed ID: 8839054 [TBL] [Abstract][Full Text] [Related]
16. Formation of lignin alkyl-O-alkyl ether structures Zhu X; Zhang D; Lu R; Lu F Org Biomol Chem; 2023 Jul; 21(28):5840-5854. PubMed ID: 37401668 [TBL] [Abstract][Full Text] [Related]
17. A novel approach towards intermolecular stabilization of para-quinone methides. First complexation of the elusive, simplest quinone methide, 4-methylene-2,5-cyclohexadien-1-one. Rabin O; Vigalok A; Milstein D Chemistry; 2000 Feb; 6(3):454-62. PubMed ID: 10747411 [TBL] [Abstract][Full Text] [Related]
18. Lignin-Biosynthetic Study: Reactivity of Quinone Methides in the Diastereopreferential Formation of p-Hydroxyphenyl- and Guaiacyl-Type β- O-4 Structures. Zhu X; Akiyama T; Yokoyama T; Matsumoto Y J Agric Food Chem; 2019 Feb; 67(8):2139-2147. PubMed ID: 30668903 [TBL] [Abstract][Full Text] [Related]
19. Oxidative quenching of quinone methide adducts reveals transient products of reversible alkylation in duplex DNA. McCrane MP; Hutchinson MA; Ad O; Rokita SE Chem Res Toxicol; 2014 Jul; 27(7):1282-93. PubMed ID: 24896651 [TBL] [Abstract][Full Text] [Related]
20. Evidence for NQO1 and NQO2 catalyzed reduction of ortho- and para-quinone methides. Kucera HR; Livingstone M; Moscoso CG; Gaikwad NW Free Radic Res; 2013 Dec; 47(12):1016-26. PubMed ID: 24074361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]