These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27276378)

  • 1. Relevance of Hydrodynamic Effects for the Calculation of Outer Surface Potential of Biological Membrane Using Electrophoretic Data.
    Silva IM; Castro MC; Silva D; Cortez CM
    An Acad Bras Cienc; 2016 Jun; 88(2):751-63. PubMed ID: 27276378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental test of new theoretical models for the electrokinetic properties of biological membranes. The effect of UO2++ and tetracaine on the electrophoretic mobility of bilayer membranes and human erythrocytes.
    Pasquale L; Winiski A; Oliva C; Vaio G; McLaughlin S
    J Gen Physiol; 1986 Dec; 88(6):697-718. PubMed ID: 3794637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biophysical model for interaction of cells with a surface coat (glycocalyx). I. Electrostatic interaction profile.
    Lerche D
    J Theor Biol; 1983 Sep; 104(2):231-48. PubMed ID: 6645556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of the electrokinetic behavior of human erythrocytes.
    Levine S; Levine M; Sharp KA; Brooks DE
    Biophys J; 1983 May; 42(2):127-35. PubMed ID: 6860771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The validity of the Smoluchowski equation in electrophoretic studies of lipid membranes.
    Egorova EM
    Electrophoresis; 1994; 15(8-9):1125-31. PubMed ID: 7859719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the electric potential at the external and internal bilayer-aqueous interfaces of the human erythrocyte membrane using spin probes.
    Lin GS; Macey RI; Mehlhorn RJ
    Biochim Biophys Acta; 1983 Aug; 732(3):683-90. PubMed ID: 6307379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the electric potential across neuronal membranes: the effect of fixed charges on spinal ganglion neurons and neuroblastoma cells.
    Pinto TM; Wedemann RS; Cortez CM
    PLoS One; 2014; 9(5):e96194. PubMed ID: 24801682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electric potential across the erythrocyte membrane: a mathematical model.
    Heinrich R; Gaestel M; Glaser R
    Acta Biol Med Ger; 1981; 40(6):765-70. PubMed ID: 7324707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ionic strength and outer surface charge on the mechanical stability of the erythrocyte membrane: a linear hydrodynamic analysis.
    Cortez-Maghelly C; Bisch PM
    J Theor Biol; 1995 Oct; 176(3):325-39. PubMed ID: 8538215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the derivation of the Smoluchowski result of electrophoretic mobility.
    Klaseboer E; Chan DYC
    J Colloid Interface Sci; 2020 May; 568():176-184. PubMed ID: 32088448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic fixed charge distribution in the RBC-glycocalyx and their influence upon the total free interaction energy.
    Lerche D
    Biorheology; 1984; 21(4):477-92. PubMed ID: 6487761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge distribution within cell surface coats of single and interacting surfaces--a minimum free electrostatic energy approach. Conclusions for electrophoretic mobility measurements.
    Donath E; Voigt A
    J Theor Biol; 1983 Apr; 101(4):569-84. PubMed ID: 6876833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophoretic mobility of sarcoplasmic reticulum vesicles - analytical model includes amino acid residues of A+P+N domain of Ca(2+)-ATPase and charged lipids.
    Smejtek P; Word RC; Satterfield LE
    Biochim Biophys Acta; 2014 Mar; 1838(3):766-75. PubMed ID: 24099739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation Distribution and Electrophoretic Motions of Rod-like Particles in a Capillary.
    Han SP; Yang SM
    J Colloid Interface Sci; 1996 Jan; 177(1):132-142. PubMed ID: 10479424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Derivation of analytical expressions for the electrical potential distribution in lipid structures.
    Tseng S; Jiang JM; Hsu JP
    J Phys Chem B; 2005 Apr; 109(16):8180-4. PubMed ID: 16851956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectrophoretic forces and potentials induced on pairs of cells in an electric field.
    Foster KR; Sowers AE
    Biophys J; 1995 Sep; 69(3):777-84. PubMed ID: 8519978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear instability analysis and mechanical interfacial tension.
    Soares KM; Maghelly CC
    J Theor Biol; 1999 Jan; 196(2):169-79. PubMed ID: 10049614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the electrophoretic mobility of biological cells.
    Ohshima H; Kondo T
    Biophys Chem; 1991 Feb; 39(2):191-8. PubMed ID: 2059667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Focus on Two Electrokinetics Issues.
    Dai C; Sheng P
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33255260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice-Boltzmann simulations of the electrophoretic stretching of polyelectrolytes: the importance of hydrodynamic interactions.
    Hickey OA; Holm C; Smiatek J
    J Chem Phys; 2014 Apr; 140(16):164904. PubMed ID: 24784307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.