These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 27277014)

  • 1. SCOUP: a probabilistic model based on the Ornstein-Uhlenbeck process to analyze single-cell expression data during differentiation.
    Matsumoto H; Kiryu H
    BMC Bioinformatics; 2016 Jun; 17(1):232. PubMed ID: 27277014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion maps for high-dimensional single-cell analysis of differentiation data.
    Haghverdi L; Buettner F; Theis FJ
    Bioinformatics; 2015 Sep; 31(18):2989-98. PubMed ID: 26002886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation.
    Matsumoto H; Kiryu H; Furusawa C; Ko MSH; Ko SBH; Gouda N; Hayashi T; Nikaido I
    Bioinformatics; 2017 Aug; 33(15):2314-2321. PubMed ID: 28379368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development.
    Chen H; Guo J; Mishra SK; Robson P; Niranjan M; Zheng J
    Bioinformatics; 2015 Apr; 31(7):1060-6. PubMed ID: 25416748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCOUT: A new algorithm for the inference of pseudo-time trajectory using single-cell data.
    Wei J; Zhou T; Zhang X; Tian T
    Comput Biol Chem; 2019 Jun; 80():111-120. PubMed ID: 30947069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate Estimation of Single-Cell Differentiation Potency Based on Network Topology and Gene Ontology Information.
    Ni X; Geng B; Zheng H; Shi J; Hu G; Gao J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3255-3262. PubMed ID: 34529570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructing complex lineage trees from scRNA-seq data using MERLoT.
    Parra RG; Papadopoulos N; Ahumada-Arranz L; Kholtei JE; Mottelson N; Horokhovsky Y; Treutlein B; Soeding J
    Nucleic Acids Res; 2019 Sep; 47(17):8961-8974. PubMed ID: 31428793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory network inferred using expression data of small sample size: application and validation in erythroid system.
    Zhu F; Shi L; Engel JD; Guan Y
    Bioinformatics; 2015 Aug; 31(15):2537-44. PubMed ID: 25840044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational strategy for predicting lineage specifiers in stem cell subpopulations.
    Okawa S; del Sol A
    Stem Cell Res; 2015 Sep; 15(2):427-34. PubMed ID: 26368290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring Causal Gene Regulatory Networks from Coupled Single-Cell Expression Dynamics Using Scribe.
    Qiu X; Rahimzamani A; Wang L; Ren B; Mao Q; Durham T; McFaline-Figueroa JL; Saunders L; Trapnell C; Kannan S
    Cell Syst; 2020 Mar; 10(3):265-274.e11. PubMed ID: 32135093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data.
    Sanchez-Castillo M; Blanco D; Tienda-Luna IM; Carrion MC; Huang Y
    Bioinformatics; 2018 Mar; 34(6):964-970. PubMed ID: 29028984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell gene expression analysis reveals regulators of distinct cell subpopulations among developing human neurons.
    Wang J; Jenjaroenpun P; Bhinge A; Angarica VE; Del Sol A; Nookaew I; Kuznetsov VA; Stanton LW
    Genome Res; 2017 Nov; 27(11):1783-1794. PubMed ID: 29030469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applying attractor dynamics to infer gene regulatory interactions involved in cellular differentiation.
    Ghaffarizadeh A; Podgorski GJ; Flann NS
    Biosystems; 2017 May; 155():29-41. PubMed ID: 28254369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting.
    Pájaro M; Alonso AA; Otero-Muras I; Vázquez C
    J Theor Biol; 2017 May; 421():51-70. PubMed ID: 28341132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data.
    Wang Z; Jin S; Liu G; Zhang X; Wang N; Wu D; Hu Y; Zhang C; Jiang Q; Xu L; Wang Y
    BMC Bioinformatics; 2017 May; 18(1):270. PubMed ID: 28535748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining gene ontology with deep neural networks to enhance the clustering of single cell RNA-Seq data.
    Peng J; Wang X; Shang X
    BMC Bioinformatics; 2019 Jun; 20(Suppl 8):284. PubMed ID: 31182005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SERGIO: A Single-Cell Expression Simulator Guided by Gene Regulatory Networks.
    Dibaeinia P; Sinha S
    Cell Syst; 2020 Sep; 11(3):252-271.e11. PubMed ID: 32871105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical Systems Model of RNA Velocity Improves Inference of Single-cell Trajectory, Pseudo-time and Gene Regulation.
    Liu R; Pisco AO; Braun E; Linnarsson S; Zou J
    J Mol Biol; 2022 Aug; 434(15):167606. PubMed ID: 35489382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TASIC: determining branching models from time series single cell data.
    Rashid S; Kotton DN; Bar-Joseph Z
    Bioinformatics; 2017 Aug; 33(16):2504-2512. PubMed ID: 28379537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LISA: Accurate reconstruction of cell trajectory and pseudo-time for massive single cell RNA-seq data.
    Chen Y; Zhang Y; Ouyang Z
    Pac Symp Biocomput; 2019; 24():338-349. PubMed ID: 30864335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.