These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 27277079)
1. Metabolome analysis of Saccharomyces cerevisiae and optimization of culture medium for S-adenosyl-L-methionine production. Hayakawa K; Matsuda F; Shimizu H AMB Express; 2016 Dec; 6(1):38. PubMed ID: 27277079 [TBL] [Abstract][Full Text] [Related]
2. (13)C-metabolic flux analysis in S-adenosyl-L-methionine production by Saccharomyces cerevisiae. Hayakawa K; Kajihata S; Matsuda F; Shimizu H J Biosci Bioeng; 2015 Nov; 120(5):532-8. PubMed ID: 25912448 [TBL] [Abstract][Full Text] [Related]
3. Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in Saccharomyces cerevisiae. Chen H; Wang Z; Wang Z; Dou J; Zhou C World J Microbiol Biotechnol; 2016 Apr; 32(4):56. PubMed ID: 26925618 [TBL] [Abstract][Full Text] [Related]
4. Improving ATP availability by sod1 deletion with a strategy of precursor feeding enhanced S-adenosyl-L-methionine accumulation in Saccharomyces cerevisiae. Hu ZC; Zheng CM; Tao YC; Wang SN; Wang YS; Liu ZQ; Zheng YG Enzyme Microb Technol; 2023 Mar; 164():110189. PubMed ID: 36586225 [TBL] [Abstract][Full Text] [Related]
5. Effect of S-adenosyl-methionine accumulation on hineka odor in sake brewed with a non-Kyokai yeast. Shibata Y; Yamada T; Ikeda Y; Kanai M; Fujii T; Akao T; Goshima T; Isogai A; Takahashi T J Biosci Bioeng; 2024 Apr; 137(4):268-273. PubMed ID: 38310037 [TBL] [Abstract][Full Text] [Related]
6. Enhanced synthesis of S-adenosyl-L-methionine through combinatorial metabolic engineering and Bayesian optimization in Saccharomyces cerevisiae. Xiao W; Shi X; Huang H; Wang X; Liang W; Xu J; Liu F; Zhang X; Xu G; Shi J; Xu Z Biotechnol J; 2024 Mar; 19(3):e2300650. PubMed ID: 38479990 [TBL] [Abstract][Full Text] [Related]
7. Enhanced S-adenosyl-l-methionine production in Saccharomyces cerevisiae by spaceflight culture, overexpressing methionine adenosyltransferase and optimizing cultivation. Huang Y; Gou X; Hu H; Xu Q; Lu Y; Cheng J J Appl Microbiol; 2012 Apr; 112(4):683-94. PubMed ID: 22313745 [TBL] [Abstract][Full Text] [Related]
9. Improved S-adenosyl-l-methionine production in Saccharomyces cerevisiae using tofu yellow serofluid. Li G; Li H; Tan Y; Hao N; Yang X; Chen K; Ouyang P J Biotechnol; 2020 Feb; 309():100-106. PubMed ID: 31926980 [TBL] [Abstract][Full Text] [Related]
10. Adenosine kinase-deficient mutant of Saccharomyces cerevisiae accumulates S-adenosylmethionine because of an enhanced methionine biosynthesis pathway. Kanai M; Masuda M; Takaoka Y; Ikeda H; Masaki K; Fujii T; Iefuji H Appl Microbiol Biotechnol; 2013 Feb; 97(3):1183-90. PubMed ID: 22790542 [TBL] [Abstract][Full Text] [Related]
11. Identification of novel metabolic engineering targets for S-adenosyl-L-methionine production in Saccharomyces cerevisiae via genome-scale engineering. Dong C; Schultz JC; Liu W; Lian J; Huang L; Xu Z; Zhao H Metab Eng; 2021 Jul; 66():319-327. PubMed ID: 33713797 [TBL] [Abstract][Full Text] [Related]
12. Breeding of Saccharomyces cerevisiae with a High-Throughput Screening Strategy for Improvement of S-Adenosyl-L-Methionine Production. Hu ZC; Tao YC; Pan JC; Zheng CM; Wang YS; Xue YP; Liu ZQ; Zheng YG Appl Biochem Biotechnol; 2024 Mar; 196(3):1450-1463. PubMed ID: 37418127 [TBL] [Abstract][Full Text] [Related]
13. Efficient production of S-adenosyl-l-methionine from dl-methionine in metabolic engineered Saccharomyces cerevisiae. Liu W; Tang D; Shi R; Lian J; Huang L; Cai J; Xu Z Biotechnol Bioeng; 2019 Dec; 116(12):3312-3323. PubMed ID: 31478186 [TBL] [Abstract][Full Text] [Related]
14. Increasing glycolysis by deletion of kcs1 and arg82 improved S-adenosyl-L-methionine production in Saccharomyces cerevisiae. Chen H; Zhu N; Wang Y; Gao X; Song Y; Zheng J; Peng J; Zhang X AMB Express; 2021 Jan; 11(1):20. PubMed ID: 33464427 [TBL] [Abstract][Full Text] [Related]
15. Improving the productivity of S-adenosyl-l-methionine by metabolic engineering in an industrial Saccharomyces cerevisiae strain. Zhao W; Hang B; Zhu X; Wang R; Shen M; Huang L; Xu Z J Biotechnol; 2016 Oct; 236():64-70. PubMed ID: 27510807 [TBL] [Abstract][Full Text] [Related]
16. Progress in the microbial production of S-adenosyl-L-methionine. Chen H; Wang Z; Cai H; Zhou C World J Microbiol Biotechnol; 2016 Sep; 32(9):153. PubMed ID: 27465853 [TBL] [Abstract][Full Text] [Related]
17. Progress in the research of S-adenosyl-L-methionine production. Chu J; Qian J; Zhuang Y; Zhang S; Li Y Appl Microbiol Biotechnol; 2013 Jan; 97(1):41-9. PubMed ID: 23135229 [TBL] [Abstract][Full Text] [Related]
18. The Improvement of SAM Accumulation by Integrating the Endogenous Methionine Adenosyltransferase Gene SAM2 in Genome of the Industrial Saccharomyces cerevisiae Strain. Zhao W; Shi F; Hang B; Huang L; Cai J; Xu Z Appl Biochem Biotechnol; 2016 Mar; 178(6):1263-72. PubMed ID: 26728652 [TBL] [Abstract][Full Text] [Related]
19. Improving the production of S-adenosyl-L-methionine in Escherichia coli by overexpressing metk. Yu P; Zhu P Prep Biochem Biotechnol; 2017 Oct; 47(9):867-873. PubMed ID: 28708454 [TBL] [Abstract][Full Text] [Related]
20. Enhancing precursors availability in Pichia pastoris for the overproduction of S-adenosyl-L-methionine employing molecular strategies with process tuning. Ravi Kant H; Balamurali M; Meenakshisundaram S J Biotechnol; 2014 Oct; 188():112-21. PubMed ID: 25160915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]