These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27277084)

  • 41. Investigation of transmit and receive performance at the fundamental and third harmonic resonance frequency of a medical ultrasound transducer.
    Frijlink ME; Løvstakken L; Torp H
    Ultrasonics; 2009 Dec; 49(8):601-4. PubMed ID: 19403153
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Second harmonic inversion for ultrasound contrast harmonic imaging.
    Pasovic M; Danilouchkine M; Faez T; van Neer PL; Cachard C; van der Steen AF; Basset O; de Jong N
    Phys Med Biol; 2011 Jun; 56(11):3163-80. PubMed ID: 21540492
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-demodulation of high-frequency ultrasound.
    Vos HJ; Goertz DE; de Jong N
    J Acoust Soc Am; 2010 Mar; 127(3):1208-17. PubMed ID: 20329819
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Frequency considerations for deep ablation with high-intensity focused ultrasound: A simulation study.
    Ellens N; Hynynen K
    Med Phys; 2015 Aug; 42(8):4896-10. PubMed ID: 26233216
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers.
    Filoux E; Callé S; Lou-Moeller R; Lethiecq M; Levassort F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1188-99. PubMed ID: 20442031
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Double frequency piezoelectric transducer design for harmonic imaging purposes in NDT.
    Montero de Espinosa F; Martínez O; Elvira Segura L; Gómez-Ullate L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jun; 52(6):980-6. PubMed ID: 16118979
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Schlieren visualization of ultrasonic wave fields with high spatial resolution.
    Neumann T; Ermert H
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1561-6. PubMed ID: 16815508
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Wideband and Wide Beam Polyvinylidene Difluoride (PVDF) Acoustic Transducer for Broadband Underwater Communications.
    Martins MS; Faria CL; Matos T; Goncalves LM; Cabral J; Silva A; Jesus SM
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527406
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Imaging the nonlinear ultrasonic parameter of a medium.
    Ichida N; Sato T; Linzer M
    Ultrason Imaging; 1983 Oct; 5(4):295-9. PubMed ID: 6686896
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multi-frequency harmonic arrays: initial experience with a novel transducer concept for nonlinear contrast imaging.
    Forsberg F; Shi WT; Jadidian B; Winder AA
    Ultrasonics; 2004 Dec; 43(2):79-85. PubMed ID: 15530981
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes.
    Karwat P; Kujawska T; Lewin PA; Secomski W; Gambin B; Litniewski J
    Ultrasonics; 2016 Feb; 65():211-9. PubMed ID: 26498063
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication and evaluation of a single-element Bi0.5Na0.5TiO3-based ultrasonic transducer.
    Hejazi MM; Jadidian B; Safari A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1840-7. PubMed ID: 22899131
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound.
    Ward B; Baker AC; Humphrey VF
    J Acoust Soc Am; 1997 Jan; 101(1):143-54. PubMed ID: 9000731
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dual-pulse frequency compounded superharmonic imaging.
    van Neer PL; Danilouchkine MG; Matte GM; van der Steen AF; de Jong N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2316-24. PubMed ID: 22083765
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nonlinear ultrasound propagation through layered liquid and tissue-equivalent media: computational and experimental results at high frequency.
    Williams R; Cherin E; Lam TY; Tavakkoli J; Zemp RJ; Foster FS
    Phys Med Biol; 2006 Nov; 51(22):5809-24. PubMed ID: 17068366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A performance study of a laser Doppler vibrometer for measuring waveforms from piezoelectric transducers.
    Fukushima Y; Nishizawa O; Sato H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1442-50. PubMed ID: 19574154
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experimental study of underwater transmission characteristics of high-frequency 30 MHz polyurea ultrasonic transducer.
    Nakazawa M; Aoyagi T; Tabaru M; Nakamura K; Ueha S
    Ultrasonics; 2014 Feb; 54(2):526-36. PubMed ID: 24035608
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dual-frequency transducer for nonlinear contrast agent imaging.
    Guiroy A; Novell A; Ringgaard E; Lou-Moeller R; Grégoire JM; Abellard AP; Zawada T; Bouakaz A; Levassort F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Dec; 60(12):2634-44. PubMed ID: 24297028
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy.
    Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G
    Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of high intensity progressive ultrasound beams in air at 300 kHz.
    Vatankhah E; Meng Y; Liu Z; Niu X; Hall NA
    J Acoust Soc Am; 2023 May; 153(5):2878. PubMed ID: 37171898
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.